Photon detectors and front -end
electronics for RICH detectors In
high particle density environments
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Challenge of high density and high rate

A Near-future high track density RICH and DIRC detectors will work from about 1 MHz/cm 2 up
to 100 Mhz/cm 2 photon hits. This is feasible with current technology
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A Is the present technology ready for the next step (i.e. 1 GHz/cm 2 photon hits and beyond)?

A Main limitations for even higher track density and higher rate:
i Detector saturation (i.e. too high occupancy, pile-up, etc.)
I Photodetector saturation (i.e. too high anode current, gain ageing, etc.)
I Electronics saturation (i.e. too high signal rate, dead time, increasing data rate, etc.)

I Radiation damage on the whole detector (TID of Mrads and neutron fluence of 104 n,, cm-2)




l Possible solutions

Some conceptually easy solutions :

A High track density _ increase detector spatial resolution
I This is what has been done so far in most cases
I Larger photodetector planes and increased focal plane distance
I Finer photodetector pixels
I Use of DIRCs when tight spaces are available
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fast RICH detector is possible

This talk is focused on photodetectors and electronics , so | will only describe solutions with
respect to these two components of a RICH detector



Il' Latest photodetectors

A The most established commercial photodetectors beyond MaPMTs are SiPMs and MCPs

A Other solution do exist (HPDs, other hybrid solutions , gaseous detectors, etc.) but they are not
considered in this talk

A Table of comparison of the main characteristics for usage at 1 GHz/cm 2 photon hits in
radioactive environments :
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Ill SIPM measurement setup
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A Test setup for SiPM measurements :

SensL C-Series 1x1 mm? 20

I Several models tested (SensL C-Series, _ )
Hamamatsu S13360 - 13xx, more to come...) SensL C-Series 1x1 mm 50
I Discrete front -end electronics and oscilloscope Hamamatsu S13360-1325CS  1.3x1.3mm? 25

read-out
Hamamatsu S13360-1350CS 1.3x1.3mm2 50

Hamamatsu S13360-1375CS 1.3x1.3mm2 75

I Low jitter laser light source

I Temperature control in climatic chamber

Light -tight box in climatic chamber Custom discrete front -end electronics



I' SIPM measurement results

A SiPM characterization did not reveal any surprise : already several publications available

A Selection of interesting measurements made by us (on Hamamatsu S13360 -1350CS, 50
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I" SIPM and radiation

SiPMs are sensitive to displacement damage: protons, neutrons and heavy ions cause bulk
damage in Silicon. Creation of traps that increase leakage (dark) current

Our goals:
A How do latest SiPM models behave when irradiated up to 104 cm-2n,,?

A Is there a way to recover radiation damage or minimize dark current by annealing or cooling?

Irradiation setup at LENA (Pavia) nuclear reactor: Bias generators
] and multimeter

1.5W 10% cm-2
2 15W 1012 cm-2
3 150 W 103 cm-2
4 1500 W 1014 cm-2

Online monitoring: | -V curves

SiPM enclosure before
insertion into the reactor

A Voltage measurement across SiPM

A Current measurement ona 10 k resistance _ current limited to a few 100



|“ SIPM 1-V curves
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SIPM dark count rate
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DCR at various total
neutron fluence

SiPM: Hamamatsu S13360 - FV
1350CS (50 celly } —

Temperature: 230 AC
Bias: Vgr + 1.5V
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<1 kHz/cm 2
10 ng, cm-2 |
200 MHz/cm 2

12 -2
104 ng, cm

Laser signal on
10* ng, cm-2 irradiated devices

2 GHz/cm 2

? (20 GHz/cm ?)

10 ng, cm-2
not shown...

Operation in single photon regime quite difficult even at 10! n,, cm=2 and 230 C
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I SIPM annealing and damage recovery

The radiation damage is here to stay with present
generation of solid state devices

A Is there a way to recover it or mitigate it?
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A Annealing improves dark count rates by a
factor 10 after 3 weeks upto 175 °C

A Producers discourage heating for long times
due to front resin window deterioration
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