

Performance of Planacon MCP-PMT photosensors under extreme working conditions

Yu.A. Melikyan on behalf of ALICE collaboration

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Fast Interaction Trigger (FIT) detector for the upgraded ALICE experiment at LHC

FIT V0+: fragmented scintillation detector for precise multiplicity measurements (48 independent readout channels)

Each V0+ sector is based on EJ-204 plastic scintillator + clear Asahi fibers with recessed ends + 2" Hamamatsu R5924-70 fine-mesh PMTs.

Each T0+ module is based on four quartz radiators + MCP-PMT photosensors + Dow Corning 200 optical grease.

Photosensor selection for the Cherenkov subsystem

Not a simple task due to the following **list of requirements:**

- Radiation hardness (46 krad and 1.3*10¹² 1-MeV-neq/cm² + safety factor);
- Magnetic field immunity up to 0.5 T;
- Precise timing;
- Form factor enabling the possibility of nearly hermetic design;
- Linear operation for extended anode currents (average up to ~10 uA, pulsed up to 20 mA);
- Total thickness up to ~3 cm

Back in 2013-2015 only **Planacon** photosensors by Photonis and **R10754-07-M16** by Hamamatsu Photonics K.K. were suitable for such application.

Planacon has higher geometry efficiency (80% vs 70%) and we've been offered significantly lower price (per 1 cm² of photocathode).

PLANACON® XP85012 or XP85112

Planacon XP85012 layout

R10754-07-M16 layout

Peculiarities of the standard Planacons

- Circuitry of standard Planacons features 64 anode outputs + common output of positive polarity.

Such cross-talk significantly distorts rising edge of each signal when two or more channels are fired, which deteriorates time resolution of the device.

- Length of traces from individual anodes to the four multi-pin jacks is unequal, which also worsens the timing.
- Anode grouping could be done at an external PCB only: 21 mm housing → 36 mm total thickness.

The external PCB increase L and C of the traces and distorts the signal shape making it XY-dependent.

 R5 and R6 resistors are glued inside the HV port and determine its height, while they are not needed when a divider circuit is used.

*only 16 out of 64 channels shown.

FIT solution for Planacon modification

We have designed custom internal PCBs for Planacons – they were installed to FIT devices by the manufacturer:

- Common output and its load resistance are eliminated → no positive cross-talk → rising edge is never distorted;
- Signals from 16 individual outputs go directly to the MMCX jack for quadrant signal output
 → no additional PCB for signal collection;
- Equalized connection length → better time resolution when wide light spots are detected;
- Optimized traces length and ground plane location at the most inner PCB → twice smaller anode capacitance → smaller crosstalks between anodes, higher amplitude-tocharge ratio;
- No resistors inside HV port → unit thickness reduced to 27 (23) mm;
- In-line 75 Ω resistors to reduce Q-factor of anodes LC-circuit.

*only 16 out of 64 channels shown.

FIT Cherenkov module characteristics

The modified Planacon XP85012/A1-Q MCP-PMTs + 2 cm-thick fused silica radiators were irradiated at CERN PS pion beam.

Time resolution of σ =13 ps is confirmed for single MIPs detection (1 MIP \approx 300 p.e.)

Time resolution of the whole system (Cherenkov module + 40 m cables + analog readout electronic) is σ =33 ps.

FIT Cherenkov module characteristics

The modified Planacon features cross-talks, but only of the negative polarity:

electrical cross-talks between anodes

optical cross-talk of Cherenkov light emitted in
 2 mm-thick quartz PMT window at ~50° angle

Influence of the combined cross-talk from those signals occurred > in different areas of the module to quadrant 3:

So, each MCP-PMTs in FIT act as four independent sensors with zero dead space and minor cross-talks between the sensors:

	Adjacent	Diagonal
Amplitude	8%	1.2%
Charge	4%	0

Planacon anode current linearity

Even though we'll operate MCP-PMTs at 1.5*10⁴ gain only, heavy ion collisions at top LHC energies result in ~2 uA/quadrant average anode current (AAC) for the most inner FIT modules. The declared limit for stock Planacons is lower – 3 uA/device.

Anode current saturation limit of MCP-PMTs depends on the MCP parameters (R, C), so devices of the proper parameters should be purchased.

Usually, Planacons have ~35 M Ω MCP stack resistance, and their dynamic range is insufficient for the central pixels of FIT:

Although, the specially requested 15 $M\Omega$ devices have high enough anode current saturation limit.

For the batch purchase, tubes within 12-22 M Ω MCP resistance range would be selected for an additional charge.

Planacon ageing

Planacons in FIT would operate at high average anode current for \gtrsim 6 years, which results in \gtrsim 0.6 C/cm² integrated anode charge (IAC) collected at the most central quadrants.

Back in 2011 Planacon XP85012 and XP85112/A1-Q lifetime was limited by 0.1 C/cm² only according to [2011 JINST 6 C10001]. Although, Planacon manufacturing process has been improved since then (better electron scrubbing, vacuum and electropolishing).

ALD-coated Planacons were proven to have lifetime up to 10 C/cm² [NIM A 845 (2017) 570–574].

Two Planacon XP85112/A1-Q-ALD samples were tested by us. They are unsuitable for FIT due to very low anode current saturation limit (50 times lower than for non-ALD samples) and unstable gain after the saturation was achieved.

Further reading: https://arxiv.org/abs/1807.03804

Planacon ageing study

ALICE

Lifetime of a sample non-ALD Planacon MCP-PMT was tested in a dedicated setup at NRNU MEPhI in April-October 2017.

The tested MCP-PMT was manufactured in 2015 and was not optimized for its use in FIT: high resistance (35 M Ω), old PCB (serial #9002028).

IAC was collected at two quadrants by illuminating them with 470 nm LED in pulsed mode round the clock from April to October 2017 in non-saturated mode (AAC≈30 nA/cm²). As a result, ~0.5 C/cm² IAC was collected at q.1.

Results of the ageing test

Since the test was performed at low gain (4*10⁴), ageing was monitored by illuminating the two MCP-PMT halves and the reference PMT by 405 nm laser and measuring signal amplitude in relative values.

As a result, **44% drop in pulse amplitude** was revealed relatively to the reference PMT - could be both due to Q.E. and/or gain deterioration.

The obtained trends (violet) compared to the only data published by *A. Britting et al.* in 2011:

At the same time, only 27% decrease in pulse amplitude was seen for the illuminated quadrant relatively to the shaded one.

^{*} Data taken from: A. Britting et al. Lifetime-issues of MCP-PMTs, 2011 JINST 6 C10001

Results of the ageing test for the actual wavelength

To check ageing influence for the Cherenkov light (160...300 nm), the tested MCP-PMT was irradiated in a wide beam at CERN PS before and after IAC collection.

Cherenkov light was generated in the 2 mm-thick quartz window of Planacon – pulse amplitude distribution across the MCP-PMT area could be compared.

15% (instead of 27%) decrease is seen in q.1 relatively q.3 and q.4, which were shaded during the ageing test → only ½ of the detected drop in pulse amplitude is expected for the actual Cherenkov pulses.

So, ~25% combined decrease in Q.E. and gain is expected for Planacon XP85012/A1-Q after collecting 0.5 C/cm² IAC.

Their ratio:

Results of the ageing test for the actual wavelength

~150 p.e./MIP is sufficient for precise timing – so, we have x2 margin in Q.E.

All Planacons could reach 10^6 gain, while we use $1.5*10^4$ – so, we have x70 margin in gain.

The observed ~25% drop in signal amplitude could be easily recovered by increase in HV with negligible loss in timing precision.

Fast ageing test of one MCP-PMT sample from the batch purchase is planned in October-November 2018.

Planacon behaviour in magnetic field

- 1.5*10⁴ gain is needed for Planacons in FIT. Typically, it requires 1300...1500 V bias voltage (~1330 V for the sample used in the B-field test);
- No published data on Planacon behaviour in B-field was found for such low voltage values;
- We have performed gain scanning of 25 um-pore Planacon XP85012/A1-Q in magnetic field with inductance up to 0.5 T.

We are grateful to the **Department for Nuclear Research of the Lebedev Physical Institute RAS** for providing the possibility of using the SP57A1 magnet at the Troitsk accelerator site.
Personal gratitude to A.I. Lvov and V.A. Baskov!

Planacon behaviour in magnetic field

- 1.5*10⁴ gain is needed for Planacons in FIT. Typically, it requires 1300...1500 V bias voltage (~1330 V for the sample used in the B-field test).
- We've observed x3 drop in gain at 0.5 T for 1330 V bias voltage could easily be compensated by \sim 50 V increase in U_b.
- Gain decrease is dependent on the absolute voltage value: x10 drop in gain is observed at U_b ≤1100 V. To rule out any MCP-PMT outliers, for the batch purchase we've specified the minimal HV for 10⁵ gain to be 1250 V.

Planacon behaviour in magnetic field

Also, we've observed that Planacon gain in B-field is highly dependent on the tilt angle in the chevron angle plane. Gain is maximal when B-field direction coincides with microchannels of the first MCP (due to the avalanche nature of electron multiplication).

We are planning to install MCP-PMTs to FIT-C array in the way to achieve minimal inclination angles in X-plane.

FIT detector status

ALTCE

- Test Cherenkov module has been installed in the ALICE cavern
 2.5 years ago. Its behaviour conforms well with the R&D results:
 - Timing resolution better than 40 ps for single MIPs;
 - 3-fold gain decrease at 0.5 T;
 - No signs of ageing.
- T0+: R&D and design phase finished, hardware production is underway;
- V0+: final prototype to be tested at CERN PS this September, designing of hardware components is underway;
- Electronics: design phase finished, production underway;
- Photosensors: first 25 items to be shipped in three batches from 15 October to 15 December 2018, other 35 - in January-April 2019;
 - Each MCP-PMT batch of 10 samples to be scrutinized in a dedicated test bench; ------
- FIT-C to be assembled in May 2019, installed in April 2020;
- FIT-A to be assembled in November 2019, installed in August 2020;
- Detector commissioning: November 2020 December 2021.

Conclusions

- Cherenkov subsystem of the FIT detector for the ALICE upgrade requires compact and rad-hard photosensors of superior timing performance and high geometry efficiency, capable of working in high B-field;
- Non-ALD Planacon MCP-PMTs match these requirements in the best way;
- Cross-talk related drawbacks of the off-the-shelf Planacons were eliminated by modifying the signal readout PCBs of Planacon XP85012/A1-Q, incorporated to the sensor;
- Additional parameters (linearity, B-field immunity at low gain etc.) are fixed by setting the selection criteria (for some extra charge);
- 0.5 C/cm² integrated anode charge collection leads to 25% only decrease in Q.E. and/or gain for a modern non-ALD Planacons (for Cherenkov light);
- Currently, FIT project is well on track: FIT-A should be assembled already in 9 month, final FIT commissioning in two years from now.

Thank you for your attention!

See more details on FIT electronics in the poster (#19)

"Fully digital readout and trigger for fast Cherenkov counters"

by D.A. Finogeev!

Back-up slides

Planacon XP85112/A1-Q-ALD, #9002095

https://arxiv.org/abs/1807.03804

Planacon XP85012/A1-Q, #9002059

ALICE - A Large Ion Collider Experiment

A dedicated heavy-ion detector to study nucleus-nucleus interactions at LHC energies.

New detectors to be installed before RUN3 for even better particle identification and tracking (especially at low p_T) and capability of matching 50 kHz Pb-Pb interaction rate (current limit ~1 kHz)

Fast Interaction Trigger (FIT) detector for the upgraded ALICE

Replaces several current forward and trigger detectors.

Main limitations:

- Very limited space from the C-side due to the MFT introduction (92 mm along the beam pipe);
- Smooth operation at *higher collision rates* required (50 kHz Pb-Pb, 0.2 or 1 MHz in p-p and p-Pb, bunch spacing as low as 25 ns);
- Immunity to *higher radiation doses*: 46 krad and 1.3*10¹² 1-MeV-neq/cm² expected (+ safety factor);
- Capability to operate at 0.5 T magnetic field;
- Hermetic design and precise collision time detection.

Required functionality:

- Event trigger with minimal latency (<425 ns), including vertex determination, centrality selection, background and ultra peripheral collisions rejection;
- Collision time for Time-Of-Flight particle ID: $\sigma < 50$ ps required (LHC clock precision $\sigma \approx 250$ ps)
- Centrality and Event Plane determination basing on the measured multiplicity;
- On-line luminosity monitoring.

Trigger Latency	Input to CTP [ns]	Contributing detectors
LM	425	FIT
L0	1200	ACO,EMC,PHOS,TOF, ZDC
L1	6100	EMC, ZDC

☐ Fast Interaction Trigger (FIT)

- Minimum bias (MB) used by most of detector
- TRD wake-up
- ☐ FIT Trigger Input latency
- 425 ns from interaction to signal at detector CTP input
- ☐ Continuous readout (rare processes do not exhibit signatures that can be selected by hardware triggers, they can only be collected by a zero bias triggers)

FIT Cherenkov module characteristics

The modified Planacon XP85012/A1-Q MCP-PMTs + 2 cm-thick fused silica radiators were irradiated at CERN PS pion beam.

Time resolution of σ =13 ps is confirmed for single MIPs detection (1 MIP \approx 300 p.e.)

Time resolution of the whole system (Cherenkov module + 40 m cables + analog readout electronic) is σ =33 ps.

1 MIP signal amplitude is **dependent on the angle of particle incidence** → FIT array in 0.8 m from the interaction point would be **concave**.

Planacon amplitude linearity

In the pulsed mode, Planacons routinely achieve 20 mA/quadrant anode currents required for FIT at the default gain (~260 MIPs or 7.5*10⁴ p.e.).

Planacon charge saturation

Bursts of 19 pulses with 25 ns period, 20 Hz repetition rate, illuminated $\varnothing 1$ cm

Saturation due to the charge depletion at the microchannels ends inside the illuminated area (450 ns illumination periode $<< \tau \approx 1$ ms).

So, charge limitation within the microchannels dead time is:

19 pulses * 40 MIP/pulse / $0.785 \text{ cm}^2 = 970 \text{ MIP/cm}^2$, or ~6800 MIP/quadrant – within the FIT requirements.

Calculating the lifetime needed for T0+ modules:

Expected integral number of collisions in ALICE after LS2 [2-4]:

Average particle load of the most central **T0+A** quadrants (MC simulations):

p-p	p-Pb	Pb-Pb
14 TeV	8.8 TeV	5.5 TeV
0.84	3.3	52
MIP/q.	MIP/q.	MIP/q.

10 mV/MIP signals correspond to 0.63 pC/MIP charge – known from beam tests (290 p.e./MIP, 10⁴ gain)

	р-р	p-Pb	Pb-Pb
Standard scenario	5.6*10 ¹¹	10 ¹¹	1.1*10 ¹¹
	(8.4 pb ⁻¹)	(50 nb ⁻¹)	(13 nb ⁻¹)
Alternative scenario	1.7*10 ¹³	2*10 ¹²	1.1*10 ¹¹
	(250 pb ⁻¹)	(1 pb ⁻¹)	(13 nb ⁻¹)

Particle load for the most central T0+C and outer T0+A modules is ≥3 times lower (Pb-Pb distribution example):

- [2] Upgrade of the ALICE Experiment: Letter Of Intent.J. Phys. G: Nucl. Part. Phys. 41 (2014) 087001.
- [3] Radiation Dose and Fluence in ALICE after LS2, ALICE-PUBLIC-2017, 30.11.2017.
- [4] Technical Design Report for the Upgrade of the Online—Offline computing system.CERN-LHCC-2015-006.

Results of the ageing test

Since the test was performed at low gain (4*10⁴), ageing was monitored by illuminating the two MCP-PMT halves and the reference PMT by 405 nm laser and measuring signal amplitude in relative values.

As a result, 44% drop in pulse amplitude revealed relatively to the reference PMT and 27% relatively to the two halves (illuminated/shaded). It could be both due to Q.E. and/or gain deterioration.

The obtained trends (violet) compared to the only data published by A. Britting et al. in 2011:

Data taken from: A. Britting et al. Lifetime-issues of MCP-PMTs, 2011 JINST 6 C10001

^{*} Data taken from: A. Britting et al. Lifetime-issues of MCP-PMTs, 2011 JINST 6 C10001

q.2 gain was ~20% lower, than q.1. It led to 0.11 C/cm² difference in IAC, which resulted in 9% difference in signal amplitude decrease.

Linear extrapolation of this value for 0.47 C/cm² results in ~40% average amplitude decrease, which confirm the basic ageing test result.

Ageing does not deteriorate Planacon quality in terms of afterpulsing – afterpulses ratio drops with the test time.

Transmission spectra for our quartz cubes, Rhodorsil 7 grease and chemically pure dimethylsiloxane (Dow Corning).

