

Status of the TORCH time-of-flight project

Neville HarnewUniversity of Oxford

(On behalf of the TORCH collaboration: The Universities of Bath, Bristol, Edinburgh, Oxford and Warwick, CERN, and Photek)

3rd August 2018

Outline

- The TORCH concept
- Development of Microchannel Plate PMTs
- Test beam results
- Future R&D
- TORCH at LHCb
- Summary

I. The TORCH R&D project

- The TORCH (Time Of internally Reflected CHerenkov light)
 R&D project to develop a large-area time-of-flight system
 eg. for the LHCb Upgrade II.
- TORCH combines timing information with DIRC-style reconstruction (BaBar DIRC, Belle II TOP detector, SuperB).
- Δ_{TOF} (π -K) = 35 ps over a ~10 m flight path. To achieve positive identification of kaons up to p ~ 10 GeV/c, need to aim for ~ 10-15 ps resolution per track
- The σ_{TOF} requirement dictates timing single photons to a precision of 70 ps for ~30 detected photons

The TORCH detector

Cherenkov light production is prompt → use a plane in a modular structure of I cm thick quartz as a source of fast signal

Cherenkov photons travel to the periphery of the detector by total internal reflection and focused → time their arrival by Micro-Channel Plate PMTs (MCPs)
Track

Measure Cherenkov angle θ_c and path length L in the quartz, plus the time of arrival. Then correct for the chromatic dispersion in the quartz.

 From simulation, ~I mrad precision is required on measurement of the angles in both planes to achieve the required intrinsic timing resolution

2. MCP development

- Need a photon detector with coarse granularity (in the non-focussing direction)
 and fine granularity (in the focussing direction) to achieve the I mrad angular
 precision.
- Micro-channel plate (MCP-PMT) photon detectors fulfil this requirement. They are well known for fast timing of single photon signals (~30 ps). Tube lifetime has been an issue in the past.
- Choose an anode pixel size: 128×8 pixels with a ~53 mm active area on a 60 mm pitch. The MCP-PMT pixel structure can in principle be adjusted according to resolution required as long as charge footprint is small enough.

MCP-PMT three phase programme

A major TORCH focus is on MCP R&D with our industrial partner: Photek (UK).

Three phases of R&D defined:

- Phase I : MCP single channel focuses on extended lifetime (up to 5 C/cm²) and ~35ps timing resolution. COMPLETED [JINST 10 (2015) C05003]
- Phase 2: Circular MCP with customised granularity (1/4 size active area). Beam tests 2015/16
 COMPLETED [arXiv:1805.04889]
 https://doi.org/10.1016/j.nima.2018.07.023

 Phase 3: Square tubes with high active area (>80%) and with required lifetime, granularity and time resolution. UNDER TEST

New lifetime measurements (Phase I tube)

- Lifetime requirement 5 C/cm²: implement ALD coating.
 - Illumination up to 6.16 Ccm⁻²
 - Gain drop observed, recovered by increase of HV
 - Marginal loss in quantum efficiency (at 3 C/cm²): a factor ~2 loss at 5 Ccm⁻². Hope is Phase 3 tubes will improve on this.

Phase 3 photon detectors

- I0 x Phase 3 MCP-PMTs delivered from Photek and are under test.
- The MCP-PMT has a square 53 x 53 mm² active area, 64 x 64 pixels.
 Resolution of I28 x 8 pixels by exploiting charge sharing.
 L. Castillo García et al,
- Readout connectors mounted on a PCB which gangs 64 pixels into 8 (or 4) and connected to anode via ACF (Anisotropic Conductive Film).
- Two types of readout PCB:
 - Readout connectors mounted on PCB, 64 x 4 pixels per tube (for use with previous version of NINO electronics – test-beam Nov 2017)
 - Readout connectors mounted on PCB, 64 x 8 pixels per tube (for use with new NINO electronics test-beam June 2018)

JINST 11 C05022 (2016)

3. Demonstrator TORCH module

- Several test-beam campaigns between 2015 & 2018 at CERN PS / T9 (~5 GeV/c p/π beam)
- Quartz radiator (12×35×1cm³)
 with matching focusing block
 (from Schott Germany)

- NINO and HPTDC electronics
 - R. Gao et al., JINST 10 C02028 (2015)
- Report here results from Nov 2017, read out with single Phase 3 MCP-PMT with 4×64 pixels

Focusing block

Radiator plate: 35 x 12 x 1 cm³

TORCH beam test infrastructure in PS/T9

10

N. Harnew

Pattern folding

- Cherenkov cone results in hyperbola-like patterns at MCP plane
- Reflections off module sides result in folding of this pattern
- Chromatic dispersion spreads line into band
- Pattern shown above for full TORCH module, however this pattern is only sampled in testbeam.
- Nominal test-beam configuration chosen to give cleanly resolved patterns.

Hit maps in MCP-PMT

- Proton-pion particle selection from ToF over ~I Im distance using beamline borosilicate counters
- Clustering applied to get MCP centroid hit position
- Correct for non-linearity and time-walk in the TORCH electronics.

Proton – pion difference cleanly resolved

y-coordinate (pixels)

Hit maps in MCP-PMT

- Proton-pion particle selection from ToF over
 Im distance using beamline borosilicate counters
- Clustering applied to get
 MCP centroid hit position
- Correct for non-linearity and time-walk in the TORCH electronics.

Proton – pion difference cleanly resolved

/-coordinate (pixels)

Time resolution

- For each column of pixels, plot time measured for each cluster relative to station T2 vs. vertical y-position
- Compare patterns relative to simulation
- Core distributions σ ≈ 100 –125 ps (energy and column dependent)
- Subtract contribution from timing reference, measure ~ 85 – 100 ps, approaching the target resolution of 70 ps per photon
- Tails due to imperfect calibration, backscattering
- Improvements are possible:
 - Pulse-height to width calibration
 - Limit of 100 ps binning in HPTDC

Photon energy dependence

TimeRes_SlotA_Order0_Energy3_Fitted

3 - 4 eV $\sigma = 105.1$ $\sigma = 1.7 \text{ ps}$ $\sigma = 1.7 \text{ ps}$

Column 3
TORCH
Preliminary

15

RICH 2018, Moscow 3 August 2018 N. Harnew

4. Full-scale prototype

- Large prototype of a half-sized TORCH module is under construction Full width, half height: 125 x 66 x 1 cm³ Will be equipped with 10 MCP-PMTs 5000 channels
- Optical components from Nikon (radiator plate, focusing block)

June 2018 beam tests

- As an incremental step, single 64 x 8 pixel MCP-PMT and upgraded electronics have already been demonstrated in the small-scale TORCH in a beam test in June this year.
- Results are being analysed: calibrations and timing measurements in progress

The full-scale module is planned for test-beam October/November 2018

RICH 2018, Moscow 3 August 2018 N. Harnew 17

5. TORCH for the LHCb Upgrade II

- The RICH system provides particle ID in LHCb
- But currently no positive kaon or proton ID below ~10 GeV/c
- Proposal to install TORCH in front of RICH2, possibly already in LS3 (2024)

TORCH performance studies at LHCb

- Simulated PID performance for charged particles produced in pp collisions and in heavy flavour decays (at $\mathcal{L} = 2 \times 10^{33}$ cm⁻²s⁻¹).
- Good separation between π/K/p in the 2 10 GeV/c range and beyond.
- Physics studies started on key physics channels and tagging performance.

Summary

Performance of a prototype detector in beam tests is very encouraging: 85-100 ps timing resolutions per photon achieved. With improvements hope to approach the desired 70 ps.

TORCH future :

- New optics half-sized module under construction
- Final phase-3 MCP-PMTs are under test
- New generation of electronics being commissioned
- Physics studies underway for Technical Proposal for the Upgrade-II of the LHCb experiment

The end!

The TORCH project has been funded by an ERC Advanced Grant under the Seventh Framework Programme (FP7), code ERC-2011-ADG proposal 299175.

Spare slides from here on

Time of flight and time of propogation

Principle of ToF reconstruction

- Cherenkov angle: $\cos \theta_c = I/(\beta n_{phase})$
- Time of propagation (ToP) in quartz:
 t = L / v_{group} = n_{group} L / c

- Measure Cherenkov angle θ_c and path length L in the quartz. Need to correct for the chromatic dispersion of the quartz.
- Can associate n_{phase} for K, π , p hypotheses from cos θ_c to get photon wavelength \rightarrow use dispersion relation for n_{group}
- L = $(t t_0)$ c / n_{group} , measure arrival time at the top of a radiator bar \rightarrow then assign most likely K, π , p hypothesis from ToP and ToF

IP L=~10 m particle flight path

tracking

TORCH angular measurement (θ_x)

- Need to measure angles of photons: their path length can then be reconstructed
- In θ_x typical lever arm ~ 2 m
 - → Angular resolution \approx 1 mrad x 2000 mm / $\sqrt{12}$
 - \rightarrow Coarse segmentation (~6 mm) sufficient for the transverse direction (θ_x)
 - \rightarrow ~8 pixels of a "Planacon-sized" MCP of 53x53 mm² active dimension

25

TORCH angular measurement (θ_z)

- Measurement of the angle in the longitudinal direction (θ_z) requires a quartz (or equivalent) focusing block to convert angle of photon into position on photon detector
- → Cherenkov angular range = 0.4 rad
 - \rightarrow angular resolution ~ I mrad: need \approx 400/ (I x $\sqrt{12}$) ~ I28 pixels
 - → fine segmentation needed along this direction

Phase I tubes: timing resolution

 Phase I Photek tubes: excellent timing resolution obtained in laboratory tests with fast laser and with commercial electronics

TORCH readout electronics

- Custom readout electronics developed, based on the ALICE TOF system: NINO + HPTDC [F. Anghinolfi et al, Nucl. Instr. and Meth. A 533, (2004), 183, M. Despeisse et al., IEEE 58 (2011) 202]
- TORCH is using 32 channel NINOs, with 64 channels per board
 (128 ch. board for the next phase)
- NINO-32 provides time-overthreshold information which is used to correct time walk & charge to width measurement - together with HPTDC time digitization (100 ps bins) nonlinearities
- The calibration has proved challenging

R. Gao et al., JINST 10 C02028 (2015)

Position resolution

- Phase 2 tubes : tests of charge sharing between pixels: requires pulse charge to width calibration
- Point-spread function of MCP-PMT adjusted to share charge over 2-3 pixels
- TORCH requirement is ~ 0.41mm/√12 = 0.12 mm. Improvement with charge division between adjacent channels → measure x4 better than that required in optimal scenario

Anode segmentation of *Phase-2* tube Active area 25 x 25 mm², 32 x 4 pixels

L. Castillo García et al, JINST 11 C05022 (2016)

TORCH Prototype module

30

Beam telescope profiles

Photon counting with Planecon

- Numbers of photon clusters measured in testbeam
- Mean number of photons expected from simulation 4.89±0.02
- Mean number of photons measured in data 3.23±0.01
- Around 33% fewer photons observed as expected

LHCb particle identification

• K-π separation (I–100 GeV) is crucial for the hadronic physics of LHCb. Currently achieved with two RICH radiators: C_4F_{10} and CF_4

- Currently no positive kaon ID below ~10 GeV/c nor any proton ID.
 The plan is to achieve this via a ToF measurement with TORCH
 - Area of 5×6 m² at z = 10 m
 - 18 module system ($66 \times 250 \text{ cm}^2$)
 - 198 MCPs (~100k readout channels)

Measuring start-time at LHCb

- To determine the time-of-flight, also need a start time (t_0)
- This might be achieved using timing information from the accelerator, but bunches are long (~ 20 cm)
 → must correct for vertex position
- Alternatively use other tracks in the event, from the primary vertex
- Most of them are pions, so the reconstruction logic can be reversed, and the start time is determined from their average assuming they are all π (outliers from other particles removed)
- Can achieve few ps resolution on t_0

Example from PV of same event

After removing outliers

TORCH for timing photons

- An idea for application of TORCH in LHCb :
 - TORCH would be placed in front of LHCb calorimeter
 - Use lead plate in front (IX₀ ≈ 6mm) for conversion of high energy photons
 - Time tagging high energy photons can associate event vertex
 - Limited by spatial resolution of calorimeter (replaces tracking)
- Assessed with simulation
 - Time resolution is sufficient to be of great help in resolving pile-up
 - However, the PID capability will degrade due to MCS

Gamma time resolution (1.0 X0 lead)

Pion momentum (GeV/c)

100

50

Possible use of BaBar DIRC bars

Possibility of re-use of BaBar DIRC quartz bars. Assigned bar still at SLAC and on hold for now.

K. Fohl et al., NIM A876 (2017) 202

RICH 2018, Moscow 3 August 2018 N. Harnew 36

TORCH possible re-use of BaBar quartz bars

- Bar length (at z = 950 cm) and total area ~ 30 m² matches TORCH needs. Adapting the bars requires focusing in both projections.
- Effect of wedge (glued to bars) is to give two separate beams: depending on whether photons reflected or not : made up of 12 planar "bar-boxes" each containing 12 quartz bars 1.7 x 3.5 x 490 cm³
- Split detector plane: assuming 60 mm square MCPs (53 mm active) requires two PMTs to cover $0.5 < \theta_z < 0.9$ rad
- Adapting the TORCH optics to re-use the BaBar DIRC seems viable: much more complicated optics, but no degradation seen compared with single projection.

PMT + Base
10,752 PMT's

Purified Water

Purified Water

Light Catcher

Standoff
Box

PMT Surface

Mirror

Mirror

4 x 1.225m Bars
glued end-to-end

RICH 2018, Moscow

K. Fohl et al., NIM A876 (2017) 202

3 August 2018