

UNIVERSITYOF
BIRMINGHAM

Marie Skłodowska-Curie Actions

NA62 RICH performance: measurement and optimization

Viacheslav Duk
on behalf of the NA62 RICH working group

Outline

$>$ NA62 and RICH

$>$ Precise mirror alignment
$>$ RICH performance:

* Electron selection
* Single ring iterative fit
* Single hit time resolution
* Number of hits
* Ring radius resolution
* Ring centre (track slope) resolution
* Single hit resolution
$>$ Conclusions

NA62 setup

Secondary positive beam
Momentum
Divergence (RMS)
Transverse Size
Composition
Nominal Intensity
$75 \mathrm{GeV} / \mathrm{c}, 1 \%$ bite
$100 \mu \mathrm{rad}$
$60 \times 30 \mathrm{~mm}^{2}$
$\mathrm{K}^{+}(6 \%) / \pi^{+}(70 \%) / \mathrm{p}(24 \%)$
$33 \times 10^{11} \mathrm{ppp}(750 \mathrm{MHz}$ at GTK3)

Decay region and Detectors
Fiducial region 60 m
K^{+}decay rate $\quad \sim 5 \mathrm{MHz}$
Vacuum
$\mathcal{O}\left(10^{-6}\right) \mathrm{mbar}$
> Main goal: $\mathrm{BR}\left(\mathrm{K}^{+} \rightarrow \pi^{+} \nu v\right)$ measurement
$>$ Other: search for New Physics in rare decays

See the talk by Patrizia
Cenci for details

NA62 and RICH requirements

NA62 requirements:

- 10^{13} kaon decays in the fiducial volume
- O(100) signal events
- $\sim 10 \%$ precision

See the talk by Patrizia Cenci for details

Rejection of $\mathrm{K}^{+} \rightarrow \mu^{+} v_{\mu}$:

- Kinematics: $\mathrm{O}\left(10^{4}\right)$
- PID in calorimeters: $>10^{5}$
- PID in RICH: $>10^{2}$

RICH requirements:

$>$ Muon misID probability at the $\sim 10^{-2}$ level in $15 \mathrm{GeV} / \mathrm{c}<\mathrm{p}<35 \mathrm{GeV} / \mathrm{c}$
> Measure the pion crossing time with $\sim 100 \mathrm{ps}$ resolution
$>$ Provide L0 trigger for charged tracks

RICH layout

RICH mirrors

RICH mirrors:

> 18 hexagonal mirrors (35 cm side), 2 semi-hexagonal (central part)
> Made of 2.5 cm thick glass $\left(\sim 20 \% \mathrm{X}_{0}\right)$
> Al coating
> Thin dielectric film to improve reflectivity

Mirror support system:
$>5 \mathrm{~cm}$ thick honeycomb panel
> Mirrors are supported by the dowel connected to the support panel
$>$ two Al ribbons allow for the mirror orientation
$>$ One Al ribbon to prevent mirror rotation
> Two piezo motors to rotate mirrors remotely

RICH mirrors

2 mirror groups (Jura, Saleve):

- Each group is oriented towards a corresponding PM flange

Mirror numbering

Mirror optical properties:
$>\mathrm{R}=34 \mathrm{~m}$
$>$ Reflectivity $\sim 88 \%(\lambda=195-650 \mathrm{~nm})$
$>\mathrm{D}_{0} \leq 4 \mathrm{~mm}$

Reflectivity measurement: one curve per mirror

RICH mirror alignment

Preliminary laser alignment:

- Measured before closing the vessel
- Setup with $\sim 10 \mathrm{~m}$ lever arm ($\mathrm{R}=34 \mathrm{~m}$)
- Precision O(500) μ rad in terms of mirror
 orientation

Precise alignment with data:

- Measured during data taking
- Use reconstructed tracks
- Iterative procedure
- Precision $\mathrm{O}(30) \mathrm{\mu rad}$ in terms of mirror orientation

Mirror alignment: procedure

Event selection:

- single track in the mirror acceptance
- Area illuminated by the cherenkov light in the acceptance of a single mirror (steps 1,2) or a single group (step 3)
- single ring 100% in PM acceptance (>80\% for lateral mirrors)

Step 1:

- Measure the absolute misalignment AM for 20 mirrors
- $\mathrm{AM}=$ Real - Predicted
- Real ring centre: ring fit
- Predicted ring centre: track extrapolation to the PM plane (nominal orientation assumed)

Step 2:

- Calculate the relative misalignment for 18 hexagonal mirrors
- Reference (one per group): semihex mirror
- Calculate piezo motor movements needed to compensate the relative misalignment
- Rotate mirrors
\longrightarrow Step 3:
- Calculate a global offset GO (average absolute misalignment) for each group
- Calculate residual misalignment $\mathrm{RM}(\mathrm{RM}=\mathrm{AM}-\mathrm{GO})$ for each mirror

End of the iteration procedure:

- Residual misalignment $\mathrm{O}(1) \mathrm{mm}$ (i.e. $30 \mu \mathrm{rad}$)

Mirror alignment: example

Alignment in 2016, step 1:

- Mirror \#5
- Global offsets of the previous iteration subtracted
- Gaussian fit performed
- Absolute misalignment is the gaussian mean

Mirror alignment: results

Alignment in 2016, step 3:

- Global offsets $\sim \mathrm{O}(20) \mathrm{mm}$
- Residual misalignment (one point = one mirror)

Performance optimization:

\checkmark Misalignment measurement on a monthly basis
\checkmark Global offsets and residual misalignment stored in a database

RICH performance

RICH performance depends a lot on the event selection

"basic" performance:

- Dedicated event selection
- Resolution of "low-level" variables
- Can be compared with other RICHes

Measurement:

- Electron sample from $\mathrm{K}^{+} \rightarrow \mathrm{e}^{+} v_{\mathrm{e}} \pi^{0}$
- Rings fully in acceptance

"real" performance:
- Analysis-driven event selection (e.g. $\mathrm{K}^{+} \rightarrow \pi^{+} \nu v$)
- "high-level" variables (PID)

Measurement (π / μ PID):

- $\pi v \nu$-like selection
- Pion sample from $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0}$
- Muon sample from $\mathrm{K}^{+} \rightarrow \mu^{+} v_{\mu}$

See the talk by Roberta
Volpe for details

RICH measurements and performance

RICH measurement	Where used	Performance parameter
Time		
Ring radius		
Ring centre		
$\mathrm{N}_{\text {hits }}{ }^{*}$		

*: $\mathrm{N}_{\text {hits }} \approx \mathrm{N}_{\text {photons }}$ (one photon per PM)

RICH measurements and performance

RICH measurement	Where used	Performance parameter
Time	L0 trigger	
Ring radius	PID	
Ring centre	Complementary track slope measurement	
$\mathrm{N}_{\text {hits }}^{*}$	Specific event selection, PID	
$*: \mathrm{N}_{\text {hits }} \approx \mathrm{N}_{\text {photons }}$ (one photon per PM)		

RICH measurements and performance

RICH measurement	Where used	Performance parameter
Time	L0 trigger	- Single hit time resolution - event time resolution
Ring radius	PID	- Ring radius resolution - single hit resolution
Ring centre	Complementary track slope measurement	- Ring centre resolution
$\mathrm{N}_{\text {hits }}{ }^{*}$	Specific event selection, PID	- $<\mathrm{N}_{\text {hits }}>$ - Figure of Merit

*: $\mathrm{N}_{\text {hits }} \approx \mathrm{N}_{\text {photons }}$ (one photon per PM)

Iterative single ring fit

Standalone single ring fit:

- No track information
- $\Sigma\left|\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{0}-\mathrm{R}\right|^{2} / \sigma_{\text {hit }}^{2}$ is minimized (r_{i} : hit position, $\sigma_{\text {hit }}$: single hit resolution)
- Fit result: ring centre r_{0}, ring radius R
- $N D F=N_{\text {hits }}-3$

Iterative single ring fit (to remove noisy hits):

- Perform the standard single ring fit
- Calculate $\chi 2$ (iter) $=\left(\mathrm{r}_{\mathrm{i}}-\mathrm{r}_{0}-\mathrm{R}\right) / \sigma_{\text {hit }}{ }^{2}+\left(\mathrm{t}_{\mathrm{i}}-\langle\mathrm{t}\rangle\right)^{2} / \sigma_{\mathrm{t}}^{2}$ for each hit ($\langle\mathrm{t}\rangle$: average hit time, $\sigma_{\mathrm{t}}=0.28 \mathrm{~ns}$)
- A hit with the largest $\chi 2$ (iter) is removed

Conditions to stop the iterative procedure (OR):

- $\quad \chi 2$ (iter) <4 for each hit
- $\mathrm{N}_{\text {hits }}=4$
- $\mathrm{N}_{\text {iter }}>5$

Performance optimization:

\checkmark Fit procedure can be tuned for single-track analyses (standalone, track seeded, combination)

Single hit time resolution

($t_{\text {hit }}-t_{\text {ref }}$) distribution: non-gaussian due to delayed hits (known issue) Gaussian part:

- plot $\left(\mathrm{t}_{\text {hit }}-\langle\mathrm{t}\rangle\right)$
- Fit the central part RMS:
- Calculate variance of hit times
- Plot $\sqrt{(\text { variance })}$
- RMS is the histogram mean

Gaussian part: 0.17 ns RMS:
~ 0.28 ns

Event time resolution: see the talk by Roberta Volpe

Number of hits

Poissonian fit:
$<\mathrm{N}_{\text {hits }}>=13.8$

Figure of Merit \mathbf{N}_{0} :
$\mathrm{N}_{\text {hits }}=\mathrm{N}_{0}{ }^{*} \mathrm{~L}^{*} \sin ^{2} \theta$
$\mathrm{N}_{0}=65 \mathrm{~cm}^{-1}$

Performance optimization:
$\checkmark<\mathrm{N}_{\text {hits }}>$ is measured on a run-by-run basis
\checkmark Values are stored in a database

Ring radius and ring centre resolution
 Ring radius distribution

Ring radius:

- $<\mathrm{R}\rangle=189.6 \mathrm{~mm}(\theta=11.2 \mathrm{mrad})$
- $\sigma(\mathrm{R})=1.47 \mathrm{~mm}(90 \mu \mathrm{rad})$

Ring radius resolution

(Real - predicted) ring centre
Ring centre (track slope) :

- $\sigma(\mathrm{Dx})=2.96 \mathrm{~mm}(170 \mu \mathrm{rad})$
- $\quad \sigma(\mathrm{Dy})=2.92 \mathrm{~mm}(170 \mu \mathrm{rad})$

Ring centre resolution

Performance optimization:

$\checkmark<\mathrm{R}\rangle$ is measured on a run-by-run basis
\square Spectrometer contribution: $<0.6 \mathrm{~mm}$ ($<35 \mu \mathrm{rad}$)
\checkmark Values are stored in a database

Single hit (space) resolution

Single hit resolution $\sigma_{\text {hit }}$:

- "Normalized" (per hit) ring radius resolution
- Must be synchronized with the ring fit method
- Pull $\left.=(\mathrm{R}-<\mathrm{R}) \sqrt{\left(\mathrm{N}_{\text {hits }}-3\right.}\right)$ used for $\sigma_{\text {hit }}$ determination

Classical approach: hit-ring centre distance
Pull distribution

Single hit resolution:

- $\sigma_{\text {hit }}=4.66 \mathrm{~mm}(270 \mu \mathrm{rad})$

Resolution key factors

factor	Impact	Contribution to the resolution	How to measure
Mirror misalignment			
Multiple scattering (entrance window)			
Multiple scattering (Ne)			
Cone geometry			
Ne dispersion			

Resolution key factors

factor	Impact	Contribution to the resolution	How to measure
Mirror misalignment	- Hit position		
Multiple scattering (entrance window)	- Track slope		
Multiple scattering (Ne)	- Photon emission angle		
Cone geometry	- Hit position - $\mathrm{N}_{\text {hits }}$		
Ne dispersion	- Cherenkov angle		

Resolution key factors

factor	Impact	Contribution to the resolution	How to measure
Mirror misalignment	- Hit position	- $\sigma_{\text {hit }}$ - $\sigma(\mathrm{Dx} / \mathrm{Dy})$	
Multiple scattering (entrance window)	- Track slope	- $\sigma(\mathrm{Dx} / \mathrm{Dy})$	
Multiple scattering (Ne)	- Photon emission angle	- $\sigma_{\text {hit }}$ - $\sigma(\mathrm{Dx} / \mathrm{Dy})$	
Cone geometry	- Hit position - $\mathrm{N}_{\text {hits }}$	- $\sigma_{\text {hit }}$ - $\sigma(\mathrm{Dx} / \mathrm{Dy})$	
Ne dispersion	- Cherenkov angle	- $\sigma_{\text {hit }}$ - $\sigma(\mathrm{Dx} / \mathrm{Dy})$	

Resolution key factors

| factor | Impact | Contribution to the
 resolution | How to measure |
| :--- | :--- | :--- | :--- | :--- |
| Mirror misalignment | • Hit position | - $\sigma_{\text {hit }}$ | |
| - | $\sigma(\mathrm{Dx} / \mathrm{Dy})$ | | |

Mirror misalignment contribution

Measure resolutions for two event selection:

- All
- Single mirror

Mirror misalignment contribution is the quadratic difference (All - Single mirror)

resolution	all	Single mirror	Misalignment contribution
$\sigma(\mathrm{R}), \mathrm{mm}$	1.47	1.31	0.7
$\sigma(\mathrm{Dx}), \mathrm{mm}$	2.96	2.82	0.9
$\sigma(\mathrm{Dy}), \mathrm{mm}$	2.92	2.83	0.7
$\sigma_{\text {hit }}, \mathrm{mm}$	4.66	4.18	2.1

Performance optimization:

\checkmark Misalignment contribution is not dominant
\checkmark Mirror alignment is optimized

Multiple scattering

Toy MC:

- Entrance window ($2 \mathrm{~mm} \mathrm{Al}, 2.2 \% \mathrm{X}_{0}$)
- $\mathrm{Ne}\left(17 \mathrm{~m}, 5.6 \% \mathrm{X}_{0}\right)$
- Photon emission points

Cone geometry

Hexagonal packing of Winston cones

Toy MC:

- 2D grid of Winston cones
- Generate real ring centre, uniformly in the central hexagon
- Shift all hits by the real centre coordinates
- Assign closest cone centre to the hit position
- Reject hits between cones
- Cone reflectivity: reject 5% hits in the mylar area ($3.75<\mathrm{r}<9 \mathrm{~mm}$)

Toy MC: combined effect

Effects simulated:

- track angular resolution
- Multiple scattering
- Cone geometry

$01.08 .2018 \bullet 28$

Toy MC vs data

	Multiple scattering (toy MC)	Cone geometry (toy MC)	Total (toy MC)	Data (single mirror)
Ring radius resolution [mm]	0.40	1.2	1.28	1.31
Single hit resolution $[m m]$	1.39	3.9	4.10	4.18
Ring centre X resolution $[m m]$	1.42	2.2	2.61	2.82

- Reasonable agreement between toy MC and data
- Some discrepancy in the ring centre resolution ($\sim 1.1 \mathrm{~mm}$) could be explained by a larger effective thickness of the entrance window

Neon dispersion

Contribution to the single hit resolution:

$\sigma_{h i t, \Delta n} \simeq f \Delta \theta_{n} \simeq f \Delta n / \theta$, where θ is the Cherenkov angle, $\theta \simeq R / f$

$$
\Delta n=\sqrt{<(n-1)^{2}>-<(n-1)>^{2}}
$$

Averaging over the "real" photon spectrum:

$$
\begin{aligned}
& <(\mathrm{n}-1)>=\int\left[(\mathrm{n}(\lambda)-1) * \varepsilon_{\mathrm{tot}}(\lambda) * \mathrm{dN}(\lambda)\right] / \int\left[\varepsilon_{\mathrm{tot}}(\lambda) * \mathrm{dN}(\lambda)\right] \\
& <(\mathrm{n}-1)^{2}>=\int\left[(\mathrm{n}(\lambda)-1)^{2} * \varepsilon_{\mathrm{tot}}(\lambda) * \mathrm{dN}(\lambda)\right] / \int\left[\varepsilon_{\mathrm{tot}}(\lambda) * \mathrm{dN}(\lambda)\right] \\
& \varepsilon_{\mathrm{tot}}(\lambda)=\varepsilon_{\text {mirror }}(\lambda) * \varepsilon_{\mathrm{cone}}(\lambda) * \varepsilon_{\text {quartz }}(\lambda) * \varepsilon_{\text {packing }} * \varepsilon_{\mathrm{PM}}(\lambda)
\end{aligned}
$$

$$
\sigma_{\text {hit }, \Delta \mathrm{n}}=0.6 \mathrm{~mm} \quad(\mathrm{small})
$$

Resolution budget

Ring radius	$[\mathrm{mm}]$	$[\mu \mathrm{rad}]$
Mirror misalignment	0.7	40
Multiple scattering	0.4	20
geometry	1.2	70
Total (measured)	1.5	90

Single hit	$[\mathrm{mm}]$	$[\mu \mathrm{rad}]$
Mirror misalignment	2.1	120
Multiple scattering	1.4	80
geometry	3.9	230
Total (measured)	4.7	270

Ring centre / Track slope (X)	$[\mathrm{mm}]$	$[\mu \mathrm{rad}]$
Mirror misalignment	0.9	50
Multiple scattering	1.4	110
geometry	2.2	260
Total (measured)	3.0	350

Conclusions

\square Precise mirror alignment procedure has been developed and implemented
\square RICH performance has been measured using the electron sample
\square Contributions to the resolutions have been investigated in detail
\square Performance optimization has been discussed

Performance parameter	$[\mathrm{mm}]$	$[\mu \mathrm{rad}]$
Residual mirror misalignment	$\mathrm{O}(1)$	$\mathrm{O}(30)$
Ring radius	1.5	80
Ring centre / track slope (X)	3.0	170
Single hit (space)	4.7	270

Performance parameter	Value
Single hit (time), RMS	0.28 ns
$\left\langle\mathrm{~N}_{\text {hits }}\right\rangle$	13.8

Spare

Light detection

Hamamatsu R7400 U03 PMs:
> External diameter 16 mm
> Active diameter 7.5 mm
> UV glass window
> Custom-made HV divider
> 185-650 nm sensitive range
> Peak sensitivity @ 420 nm
$>$ Gain $1.5^{*} 10^{6}(\mathrm{HV}=900 \mathrm{~V})$
> QE ~20\% (@ 420 nm)
> Transit time spread 0.28 ns (FWHM)

$\sigma_{\text {hit }}:$ classical vs NA62 approach

	classical	NA62	
NDF for $\sigma(R)$ determination	$\mathrm{N}_{\text {hits }}-1$	OK	$\mathrm{N}_{\text {hits }}-3$
Spectrometer contribution to $\sigma_{\text {hit }}$	yes	no	OK
Track slope measurement	no	yes	OK
$\sigma_{\text {hit }}$ affected by the multiple scattering in the entrance window	yes	no	OK
Non-gaussian shape of the $\sigma_{\text {hit }}$ determination distribution	yes	no	OK

OK : better performance

Toy MC

Toy MC salgorithm:

> Simulate an event
> Perform the standalone ring fit
$>$ look at $\sigma(\mathrm{R}), \sigma(\mathrm{Dx} / \mathrm{Dy}), \sigma_{\text {hit }}$

quantity	Simulation recipe
P	e^{+}spectrum known from data
$\mathrm{N}_{\text {hits }}$	Poissonian p.d.f., $<\mathrm{N}_{\text {hits }}>$ tuned to have 13.8 at the final step
track angular uncertainty (Spectrometer)	Known from data
multiple scattering (RICH entrance)	Analytical calculation
multiple scattering (Ne)	Analytical calculation
Cone geometry	Size known, reflectivity $\sim 95 \%$

Multiple scattering

$$
\theta_{0}=\frac{13.6 \mathrm{MeV}}{\beta c p} z \sqrt{x / X_{0}}\left[1+0.038 \ln \left(x / X_{0}\right)\right]
$$

NB plane case (i.e. one coordinate: X or Y)

$\theta_{\text {space }}^{2} \approx\left(\theta_{\text {plane }, x}^{2}+\theta_{\text {plane }, y}^{2}\right)$

Figure 27.8: Quantities used to describe multiple Coulomb scattering. The particle is incident in the plane of the figure.

Multiple scattering simulation:

- Calculate θ_{0}
- Generate γ_{1}, γ_{2} : normally distributed with $(0,1)$
- $\theta_{\mathrm{X}}=\theta_{0} \gamma_{1}$
- $\theta_{\mathrm{Y}}=\theta_{0} \gamma_{2}$
- PM (focal) plane: $d X=\theta_{X} f ; d Y=\theta_{Y} f$

