

**Charged particle identification using the liquid Xenon calorimeter of the CMD-3 detector** 



V.L. Ivanov, G.V. Fedotovich, A.V. Anisenkov, A.A. Grebenuk, A.A. Kozyrev, A.A. Ruban, K. Yu. Mikhailov

Budker Institute of Nuclear Physics (Novosibirsk, Russia)

CMD-3 collaboration

e-mail: vyacheslav\_lvovich\_ivanov@mail.ru

# Abstract

This report describes a currently being developed procedure of the charged particle identification for CMD-3 detector, installed at the VEPP-2000 collider. The procedure is based on the application of the boosted decision trees classification method, and uses as input variables, among others, the specific energy losses of charged particle in the layers of the liquid Xenon calorimeter. The efficiency of the procedure is demonstrated by an example of the extraction of events of  $e^+e^- \rightarrow K^+K^-(\gamma)$  process in the center of mass energy range from 1.28 to 1.65 GeV.



#### **5.** Detector response tuning



**Figure 11.** The comparison of the  $dE/dx_{LXe}$  spectra for cosmics after the

| layer 1 |     | E  | <sup>20</sup> laver 6 |           |
|---------|-----|----|-----------------------|-----------|
|         | INT | ×/ |                       | IT States |
|         | ON  | Me |                       | ۷         |

Figure 12. The uniformly charged brick in the anode-cathode gap. The model is used for the transparency coefficients calculation.



The tracking system of CMD-3 detector consists of the cylindrical drift chamber (DC) and double-layer cylindrical multiwire proportional Z-chamber, installed inside a superconducting solenoid with 1.0-1.3 T magnetic field (see Fig. 1). Amplitude information from the DC wires is used to measure the specific ionization losses  $dE/dx_{DC}$  of charged particles. The liquid Xenon (LXe) calorimeter of 5.4 X<sub>0</sub> thickness consists of 14 cylindrical ionization chambers formed by 7 cylindrical cathodes and 8 anodes with 10.2 mm gap between them (see Fig. 2). Cathodes are divided into 2112 strips to provide precise coordinate measurement along with the measurement of the specific energy losses  $(dE/dx_{LXe})$  in each of 14 anode-cathode layers (see Fig. 3). Each side of the cathode cylinder contains about 150 strips. The strips on the opposite sides of cathode are mutually perpendicular, which allows one to measure z and  $\varphi$  coordinates of the "hit" in the strips channels.

# 2. $dE/dx_{LXe}$ vs. $dE/dx_{DC}$ : general considerations

In this report we will focus on the charged kaons identification. The separation of the single kaons from pions/muons using only  $dE/dx_{DC}$  can be reliably performed only for the particles momenta lower than 450 MeV/c (see Fig. 4). For the  $K^+K^ K^+K^-\pi^0$ ,  $K^+K^-2\pi^0$ ,  $K_SK^\pm\pi^\mp$  final states at high c.m. energies it is hard or impossible to obtain sufficiently pure sample of signal events using only  $dE/dx_{DC}$  and the energy-momentum conservation. Hence the  $dE/dx_{LXe}$  -based PID should be used.

- tuning). Distributions of the  $dE/dx_{LXe}$  in seven LXe double layers depending on the particle momentum for the simulated single  $e^{-}, \mu^{-}, \pi^{-}, K^{-}$  are shown in Figs. 5-6. These are the major  $dE/dx_{DC-LXe}$  differences:
- $dE/dx_{LXe}$  increases (on average) layer by layer because of the particle deceleration (see Fig. 7);
- For the  $\mu^{\pm}$ ,  $\pi^{\pm}$ ,  $K^{\pm}$  and  $p^{\pm}$  there are different momentum thresholds  $p_{thr}$  of the particle absorption in the material in front of the calorimeter  $p_{thr}$ , below which only the products of particle decay or of the absorption by nucleon can reach the calorimeter. For kaons  $p_{thr}^{K}$  is ~400 MeV/c (see Fig. 5);
- 3. The values of the  $p_{thr}$ , as well as the distributions of the  $dE/dx_{LXe}$ , depend on the expected distance of the pass  $d_{LXe}$  of the particle in the LXe-layer, because the shower profile (for  $e^{\pm}$ ), the probability of nuclear interaction (for hadrons) and the particle's deceleration rate are the functions of  $d_{LXe}$ .
- In contrast with the DC the probability of nuclear interaction hadrons in LXe is not small (~25%). The accuracy of simulation of such interactions is not guaranteed and requires verification.

dE/dx,

18

introducing additional Gaussian noise, see Fig. 15, and use some (much smaller) noise to fit the  $dE/dx_{summ}$  spectra, Fig. 16.

spectra for pions from the  $e^+e^- \rightarrow 2\pi^+2\pi^-$  process, see Figs. 17-18. We see the agreement, good enough for MC-based BDT training.



Figure 14. The  $dE/dx^{up}_{LXe}$ :  $dE/dx^{down}_{LXe}$  distributions in the 1<sup>st</sup> and 6<sup>th</sup> layers. Figure 13. The distributions of the y-component of the D-field above the upper strips (a), under upper strips (b), above the lower strips (c), under lower strips (d).



Figure 14. The  $dE/dx_{diff}$  distributions in 7 layers for cosmics (before Figure 15. The  $dE/dx_{diff}$  distributions in 7 layers for cosmics (after tuning).





Figure 17. The  $dE/dx_{diff}$  distributions in 7 layers for pions from  $2\pi^+2\pi^-$  (after tuning).

**Figure 18.** The  $dE/dx_{summ}$  distributions in 7 layers for pions from  $2\pi^+2\pi^-$ (after tuning).



16000



**Figure 4.** The  $dE/dx_{DC}$  vs. particle momentum distribution for the events of the process  $K^+K^-\pi^+\pi^-$ , selected in the simulation,  $\sqrt{s} \in (1.5 \text{ GeV}; 2.0 \text{ GeV}).$ 



### **3.** General idea of the charged PID procedure

The idea of the LXe-based PID is the following:

- For each DC-track with curvature, small enough to hit the particle in LXe, we calculate 10 values of the responses (R) of the multivariate  $\frac{3}{2}$ classifiers (taken from TMVA package), trained for the optimal separation of particular pairs of particles in the particular momentum p and  $d_{LXe}$  parameter ranges  $\delta p_i$  and  $\delta d_{LXe,i}$  (see table below and Fig. 8).
- For the training of the classifiers we simulate  $\sim 5 \cdot 10^6$  events with single  $e^{\pm}$ ,  $\mu^{\pm}$ ,  $\pi^{\pm}$ ,  $K^{\pm}$ ,  $p^{\pm}$ , having the momentum and  $d_{LXe}$ parameter uniformly distributed in the ranges from 0.04 GeV to 1.1 GeV and from 1.0 to 1.5 correspondingly. In total we have 4400 classifiers to be trained with the 14 values of  $dE/dx_{LXe}$  as the input variables.



layer number

(yellow).

## 6. Example: selection of $e^+e^- \rightarrow K^+K^-(\gamma)$ events for $\sqrt{s} \in (1.28 \text{ GeV}; 1.65 \text{ GeV})$

We illustrate the efficiency of the developed PID technique by an example of selection of the events of  $e^+e^- \rightarrow K^+K^-(\gamma)$  process in the c.m. energy range from 1.28 to 1.65 GeV on the basis of 12.5  $pb^{-1}$  of integrated luminosity. We use the simulation of the events of signal and the major background processes ( $e^+e^- \rightarrow \pi^+\pi^-, \mu^+\mu^-, e^+e^-$  and cosmics).

We select the events having two oppositely charged DC-tracks with polar angles  $\theta_{DC}^{1,2} \in (0.9; \pi - 0.9)$ , satisfying the condition of collinearity in  $r - \varphi$  plane:  $||\varphi_{DC}^{1} - \varphi_{DC}^{2}| - \pi| < 0.15$ .

The distribution of the averaged energy deposition of two charged particles in the calorimeter vs. the energy disbalance  $\Delta E = \sqrt{\overline{p_{K^+}}^2 + m_K^2 + \sqrt{\overline{p_{K^-}}^2 + m_K^2 + |p_{z,K^+}|} - 2E_{beam}$  in the experiment and simulation is shown in Figure 19. The term  $|p_{z,K^+} + p_{z,K^-}|$  is added to  $\Delta E$  to compensate the energy of ISR photons, emitted along beam axis. In addition to the clusters of  $K^+K^-$ ,  $\pi^+\pi^-$ ,  $\mu^+\mu^-$ ,  $e^+e^-$  final states the horizontal band of cosmic muons is seen.

Further, Fig. 22a-b show the distributions of the  $(BDT_{K^+/e^+} + BDT_{K^-/e^-})/2$  parameter ( $\sqrt{s}=1.282$  and 1.65 GeV correspondingly). The shown cuts are used to suppress  $e^+e^-$  final state, see the result in Fig. 20.

Then we apply the cut on  $(BDT_{K^+/\mu^+} + BDT_{K^-/\mu^-})/2$  to suppress cosmics,  $\mu^+\mu^-$  and  $\pi^+\pi^-$  final states, see Fig. 23a-b. As a result we obtain almost pure sample  $e^+e^- \rightarrow K^+K^-(\gamma)$  events, see Fig. 21.

Finally, using the selected  $K^+K^-$  events, we can prove the correctness of the  $dE/dx_{LXe}$  simulation for kaons, see Figs. 24-25.



(BDT(e<sup>+</sup>,K<sup>+</sup>)+BDT(e,K))/2





Figure 19. The distribution of the averaged energy deposition of two charged particles in the calorimeter vs. the energy disbalance  $\Delta E$  for the selected events. All energy points are combined.

Figure 20. The distribution of the averaged energy deposition of two charged particles in the calorimeter vs. the energy disbalance  $\Delta E$  for the selected events after  $e^+e^-$  suppression. All energy points are combined.

(BDT(e<sup>+</sup>,K<sup>+</sup>)+BDT(e<sup>-</sup>,K<sup>-</sup>))/2

Figure 21. The distribution of the averaged energy deposition of two charged particles in the calorimeter vs. the energy disbalance  $\Delta E$  for the selected events after  $e^+e^-$ ,  $\mu^+\mu^-$ ,  $\pi^+\pi^-$  and cosmics suppression. All energy points are combined.

-0.4 -0.3 -0.2 -0.1 0 0.1

(BDT( μ<sup>+</sup>,K<sup>+</sup>)+BDT( μ<sup>-</sup>,K<sup>-</sup>))/2



**Figure 5.** The  $dE/dx_{LXe}$  in each of the 14 layers vs. particle momentum for the simulated  $K^{\pm}$  and  $\pi^{\pm}$ . \_dE/dx<sub>LXe</sub>, MeV/cm

|             | $e^{\pm}$                    | $\mu^{\pm}$                    | $\pi^{\pm}$                  | $K^{\pm}$                  |
|-------------|------------------------------|--------------------------------|------------------------------|----------------------------|
| $\mu^{\pm}$ | $R_{i,j}(\mu^{\pm}/e^{\pm})$ | -                              | -                            | -                          |
| $\pi^{\pm}$ | $R_{i,j}(\pi^{\pm}/e^{\pm})$ | $R_{i,j}(\pi^{\pm}/\mu^{\pm})$ | -                            | -                          |
| $K^{\pm}$   | $R_{i,j}(K^{\pm}/e^{\pm})$   | $R_{i,j}(K^{\pm}/\mu^{\pm})$   | $R_{i,j}(K^{\pm}/\pi^{\pm})$ | -                          |
| $p^{\pm}$   | $R_{i,j}(p^{\pm}/e^{\pm})$   | $R_{i,j}(p^{\pm}/\mu^{\pm})$   | $R_{i,j}(p^{\pm}/\pi^{\pm})$ | $R_{i,j}(p^{\pm}/K^{\pm})$ |

gure 8. The distribution of the particle momenta  $d_{LXe}$  for simulated  $\mu^+$  (training sample). The nits of  $\delta p_i$ :  $\delta d_{LXe,j}$  cells, inside which particular ssifiers are trained are also shown.

#### 4. Selection of the best classifier

First of all one should choose the most powerful classifier from about 40 classification methods, proposed by the TMVA package. We tested different methods for the task of  $K/\pi$  separation at p = 870 MeV/c, see Fig. 9. We found BDT (boosted decision trees) to be the globally most powerful method.



Figure 9. The dependence of the background rejection efficiency Figure 10. The dependence of the BDT background on the signal selection efficiency for  $K/\pi$  separation at the rejection efficiency on the signal selection efficiency for momenta 870 MeV/c for different classification methods trained the  $K/\pi$  separation in the different momentum ranges from and tested 300 to 900 MeV/c.



Figure 22. The distributions of the  $(BDT_{K^+/e^+} + BDT_{K^-/e^-})/2$  parameter (a -  $\sqrt{s}$ =1.282 GeV, b - 1.65 GeV)

in the experiment (red markers), simulation of  $e^+e^-$  (gray),  $\mu^+\mu^-$  (magenta),  $\pi^+\pi^-$  (turquoise),  $K^+K^-$ 

**Figure 24.** The  $dE/dx_{diff}$  distributions in 7 layers for kaons from  $K^+K^-$  final state (after tuning).

#### Figure 23. The distributions of the $(BDT_{K^+/\mu^+} + BDT_{K^-/\mu^-})/2$ parameter (a - $\sqrt{s}$ =1.282 GeV, b - 1.65 GeV) in the experiment (red markers), simulation of $e^+e^-$ (gray), $\mu^+\mu^-$ (magenta), $\pi^+\pi^-$ (turquoise), $K^+K^-$ (yellow). layer 3 layer ' layer 2

 $(BDT(\mu^+, K^+) + BDT(\mu^-, K^-))/2$ 



**Figure 25.** The  $dE/dx_{summ}$  distributions in 7 layers for kaons from  $K^+K^-$  final state (after tuning).

#### 7. Plans

We have no problems in the detector response simulation for m.i.p.s, but see some simulation-experiment discrepancy for showers. Presumably, it is caused by the correlated/anticorrelated variation of the transparency coefficient in the lower and upper layer. We plan to study these variations thoroughly using CST-simulation.

We plan to apply the described technique to the data collected in the runs of 2017-2018 and to use it in the analyzes of the final states  $K^+K^-$ ,  $K^+K^-\pi^0$ ,  $K^+K^-2\pi^0$ ,  $K_5K^\pm\pi^\mp$ .

10<sup>th</sup> International Workshop on Ring Imaging Cherenkov Detectors, 29 July – 4 August 2018, Russian Academy of Sciences, Moscow