=

Recent Progress with Microchannel-Plate PMTs

Albert Lehmann, Merlin Böhm, Daniel Miehling, Markus Pfaffinger, Samuel Stelter, Fred Uhlig (Universität Erlangen-Nürnberg) for the PANDA Cherenkov Group

- Introduction and motivation
- Status of lifetime measurements
- Properties of the latest 2" MCP-PMTs
- New way to study darkcount, cross talk, recoil electron and afterpulsing events
- Summary and outlook

PANDA Detector at FAIR

MCP-PMTs for PANDA DIRCs

- MCP-PMTs are the only suitable sensors for PANDA
- Barrel DIRC
 - Photon rate: ~200 kHz/cm²
 - 10 years anode charge: 5 C/cm²
 - Pixel size: ~ 6 x 6 mm²
- Endcap DIRC
 - Photon rate: up to 1 MHz/cm²
 - 10 years anode charge: >5 C/cm²
 - Pixel size: ~ 0.5 x 16 mm²

- Problem in 2011: The few aging tests existing were done in rather different environments → results are difficult to compare
- Goal: measure aging behavior for all available lifetime-enhanced MCP-PMTs in same environment
- Simultaneous illumination with common light source → same rate

Measurement of MCP Lifetime

Continuous illumination

- 460 nm LED at 0.25 to 1 MHz rate (comparable to PANDA DIRCs) attenuated to single photon level
- All MCP-PMTs in same light spot (very homogeneous by using a thick lens and a Thorlabs diffuser)
- Simultaneous illumination of up to sixteen 2-inch MCP-PMTs with current setup

Permanent monitoring

MCP pulse heights (rate highly prescaled) and LED light intensity

Q.E. measurements

- Light source: very stable Xenon arc lamp
- \sim 250–700 nm wavelength band with in-house monochromator $\Delta \lambda$ = 1 nm
- Every 3-4 weeks (at beginning days): wavelength scan
- Every 3-4 months (at beginning weeks): complete surface scan at 372 nm

Attempts to Reduce Aging

- First attempts (<2011): Improved vacuum quality and cleaning of MCP surfaces by electron scrubbing techniques
 - Only moderately successful (2 3x lifetime improvement)
- Thin (5-10 nm) Al₂O₃ films before or between MCPs [NIM A629 (2011) 111]
 - Lifetime improvement by factor ~10
- Modified and more robust photo cathodes [JINST 6 C12026 (2011)]
 - Moderate QE decline to >5 C/cm² but very high darkcount rates
- Atomic Layer Deposition (ALD)
 - MCP substrate coated by ultra-thin atomic layer (MgO, Al₂O₃) to reduce outgassing
 - ullet Arradiance + ANL ightarrow LAPPD, PHOTONIS, ..
 - MCP pores are coated in three steps
 - resistive layer
 - secondary electron emission (SEE) layer
 - electrode layer

[NIM A639 (2011) 148]

!! most successful!!

Results with non-ALD MCP-PMTs

- PC ages with integrated anode charge (IAC)
 - film: QE good up to ~1 C/cm², then dropping
 - new PC: slow, but steady QE drop (>5 C/cm²)
 - factor ~10 improvement in lifetime
- Increasing IAC causes also
 - Moderate gain drop (factor 1-2)
 - Strong decline of DCR (factor 100 1000)
- When QE starts decreasing
 - Faster aging for red light than for blue
 - 2d-scans: usually PC aging starts and is more pronounced at rims and corners

Investigated ALD-coated MCP-PMTs

		PHOTONIS		Hamamatsu				
	XP85112			R10754X-07-M16M	R13266-07-M64	R13266-07-M768	R13266-07-M64M	
model	9001223/1332	9001393	9002108	KT0001/0002	JS0022/0035	JS0018/0027	YH0250	
pore size (µm)	10			10	10			
number of pixels	8x8			4x4	8x8			
active area (mm²)	53x53			22x22	51x51			
total area (mm²)	59x59			27.5x27.5	61x61			
geom. efficiency (%)	81			61	70			
peak Q.E.	22% @ 380 nm	19% @ 380 nm	22% @ 380 nm	22/21% @ 415 nm	17/25% @ 415 nm	18/24% @ 415 nm	28% @ 380 nm	
comments	1 ALD layer	2 ALD layers	1 ALD layer	1 ALD layer				
	normal CE (~65%) high		high CE (>90%)	film betw. MCPs	film in front of MCP-in no		no film	
	UV-enhanced PC			normal CE (~60%)				

- First ALD-coated MCP-PMT from PHOTONIS received in mid 2011
- ALD-coated (with film) 1-inch Hamamatsu available from mid 2013
- ALD-coated 2-inch Hamamatsu shipped in mid 2015
- Recent 2-inch tubes from Photonis and Hamamatsu optimized for PANDA needs
 - high and uniform QE (and CE), gain and rate stability
 - low darkcount and afterpulse rates

=

Gain, DCR and QE (ALD MCP-PMTs)

Thot. 900 1332. gain/DCIX variations, QL stable up to 10 C/citi, then deciming

Ham. JS0035 and Phot. 9001393: stable up to 7.5 and 20 C/cm², respectively

Hamamatsu JS0035: except a tiny spot at upper rim no aging up to 7.5 C/cm² Phot. 1 ALD layer 9001332: aging after 10 C/cm² at left half → ion feedback Phot. 2 ALD layers 9001393: no sign of QE degradation up to 20 C/cm²

Illuminated

Illuminated

Lifetime of ALD MCP-PMTs (07/2018)

- 1-inch ALD Hamamatsu: 50% of original QE after 13 14 C/cm²
- 2-inch ALD Hamamatsu: best tube at 7.5 C/cm², wo film just started
- 1-layer ALD PHOTONIS: aging starts at 6 and 10 C/cm²
- 2-layer ALD PHOTONIS: no sign of aging up to 20 C/cm²

Latest 2" Multi-Anode MCP-PMTs

- Photonis [JINST 13 C01047 (2018)]
 - layout existent since Burle Planacons
 - improvements to catch most electrons bouncing at the MCP-in → CE > 90%
 - 1-layer ALD surfaces; no film
 - active area ratio: 81%
 - available in 8x8 and 3x100 pixel layout

Hamamatsu

- first prototypes (2014) were with ALD surfaces + film in front of 1st MCP
- latest version is without a film to improve P/V ratio of pulse heights
- active area ratio: 70%
- available in 8x8 and 6x128 pixel layout

RICH 2018 -- Moskow (Russia) -- July 31, 2018

Gain of non-ALD and ALD Tubes

- ALD tubes show faster gain drop in B-fields than non-ALD tubes!
 - Photonis 9002108: gain drop at 1 Tesla, 0 deg: factor 2; 15 deg: factor 3
 - Hamamatsu YH0250: gain drop at 1 Tesla, 0 deg: factor 4; 15 deg: factor 6

Properties of 2" Hamamatsu (8x8)

positive

high QE (>25%)

lower HV needed than with first tubes

gain homogeneity

rate capability to ~10⁶ photons/s/cm²₋₁₀

■ good TTS and RMS₋₂₀ time resolution

still marginal

QE homogeneity (~20% fluctuation)

New 2" Hamamatsu MCP-PMT (R13266) without film is suitable for PANDA DIRCs in principle (lifetime pending)

Properties of hiCE Photonis (8x8)

9002108

positive

high QE (>25%) and CE (>90%) → **DQE** >20%

maybe fewer tubes per sector needed

- QE homogeneity
- low HV required
- rate capability to >>10⁶ phots/s/cm²
- good RMS time res. _50 with higher U_{PC-MCP}

could be better

gain homogeneity (x2.5 fluctuation)

New hiCE and hiQE Photonis MCP-PMT (9002108) is suitable for PANDA DIRCs (lifetime pending)

x [mm]

RICH 2018 -- Moskow (Russia) -- July 31, 2018

x [mm]

Scans with TRB/PADIWA DAQ

For details about TRB/PADIWA DAQ-system see refs. in JINST 13 (2018) C02010

- Each channel: TRB system is permanently analyzing data stream and buffering PADIWA time and time-over-threshold (ToT) information of all hits above threshold
- After a trigger (t = 0) all hits within a certain time interval (e.g. -10 to +10 μs) are read out and stored; in our case the trigger is usually given by the Pilas laser
- Main information per channel obtained with xy-scans
 - x-, y-position, hit time, ToT, number of hits
- Higher level information accessible:
 - Afterpulse distributions → TOF of feedback ions
 - Darkcount xy-distributions
 - Charge sharing (and electronic) crosstalk (>= 2 hits at same time)
 - Recoil electron distributions (spatial information and time delay)
- TRB scans allow the separation of hits from recoil electrons
 - charge sharing events
 - afterpulse hits

Information from TRB-Scans

Spatial Distribution of Recoil e

PHOTONIS 9002085; read out pixel: x3-y6

- Prompt hits (at 100 ns) populate only the anode pad area (and electronic crosstalk)
- Later hits fill a wider spacial area (~18 mm Ø)
- Circular spacial distribution of later hits point to recoil electrons

Comparison of Darkcount Rates

DCR determined by integral between N(-10μs) to N(0μs)

 15 mV threshold (corresponding to ~1/3 mean pulse height for 1 p.e.)

- Lowest integral DCR (<1 kHz) with 10 µm ALD Hamamatsu YH0250
- Rate/pixel is not homogeneously distributed
- DCR increases with gain

Highest darkcount rates usually seen in corner or edge pixels → reason currently unknown!

Comparison of Crosstalk

Crosstalk can be determined by a cut around t = 80 to 120 ps

- 1 hit distribution→ anode grid
- 2 hit distribution→ crosstalk by charge sharing
- Determination of charge cloud size possible (could be also size of induction region)

Hamamatsu MCP-PMT shows different crosstalk behavior than Photonis → probably caused by different (MCP – anode) distance

Comparison of Afterpulses

Measure afterpulse TOF distributions and fractions

Laser pulse peak at (direct p.e.) 100 ns

(direct p.e.) 100 ns
 Large bump probably

caused by multiple-scattering ions

- TOF distributions in some cases allow the identification of ions
- Hamamatsu tubes show a more compressed TOF spectrum than Photonis → PC is closer to MCPin
- Afterpulse fractions of latest tubes vary from 0.1% to 3%

2500

gain

No gain dependence seen in afterpulse fractions of Photonis MCP-PMTs, this is different for Hamamatsu tube

1500

1000 1500 2000 2500 3000

Problem: Signal Oscillations

RICH 2016: J. Vav'ra, NIM A876 (2017) 185

- J. Vav'ra: "coherent excitations" in old (2005) Planacon tubes
- Recently tested with latest MCP-PMTs:
 - ALD coating; 10⁶ gain; diffuse illumination of full PC area

9002108 x: 5 ns/div v: 10 mV/div

Photonis

Trigger: Laser * px44

ND2.6

3 phot

pixel's read out Hamamatsu

v: 10 mV/div

Laser * CH29

Findings from Oscillation Effect

- We see a similar oscillation effect in the latest PHOTONIS MCP-PMTs as observed by Jerry >10 years ago with Burle Planacons
- Measured pulse distributions and pulse height spectra for different
 - ND filters (→ number of photo electrons per pixel)
 - number of illuminated pixels (→ number of photo electrons per sensor)
- Quantitative results
 - full sensor illuminated:
 - oscillation starts at ~10 single photons (per sensor)
 - significant increase of oscillations with more photons (per sensor)
 - effect seen in the latest 2-inch of PHOTONIS and Hamamatsu MCP-PMTs
- Oscillation is also visible without a backplane attached to the tube
- Why does this matter?
 - may cause worse time resolution
 - fake hits in anode pixels

Summary

- Best MCP-PMTs show lifetimes up to 20 C/cm²
 → new ALD technique brought x100 lifetime improvement
- Recent 2-inch MCP-PMTs show very favorable properties (e.g., high QE, high CE, low DCR, good rate capability, ...),
 but ALD coated MCP-PMTs are more sensitive to strong B-fields
- PADIWA/TRB DAQ allows investigation of internal MCP properties
- Signal oscillation problems when several pixels are hit simultaneously

Outlook

- Tendering process for MCP-PMTs will start very soon
- Semi-automatic quality assurance setup is available to simultaneously measure most (wanted and unwanted) properties of many MCP-PMTs
- Growing data base should give more insight into MCP-PMT features

Illumination Overview

	Sensor ID	Integral charge (July 10, 2018) [mC/cm²]	QE start [%]	QE latest [%]	QE latest / QE start [%]	Comments
Photonis XP85112	9001223	9234	22.15	5.29	24%	Start: 23 Aug. 11 Stop: 22 Sep. 15
	9001332	15909	22.96	8.16	36%	Start: 12 Dec. 12 Stop: 26 Oct. 17
	9001393	19988	19.05	19.68	103%	Start: 23 Jan. 14 ongoing
Hamamatsu R13266 R10754X	KT0001 (M16M)	20090	21.52	5.20	24%	Start: 20 Aug. 13 Stop: 10 Jul. 18
	KT0002 (M16M)	19334	21.4	5.17	24%	Start: 21 Oct. 13 Stop: 10 Jul. 18
	JS0018 (M768)	1284	17.97	2.55	14%	Start: 31 Aug. 16 Stop: 10 Jul. 18
	JS0022 (M64)	4918	17.43	4.46	26%	Start: 11 Dec. 15 Stop: 5 Apr. 18
	JS0027 (M768)	2756	24.27	23.00	95%	Start: 31 Aug. 16 ongoing
	JS0035 (M64)	7512	25.47	25.28	99%	Start: 31 Aug. 16 ongoing
	YH0250 (M64M)	986	25.37	25.47	100%	Start: 5 Apr. 18 ongoing