

Calibration of the Belle II Aerogel Ring Imaging detector

Rok Pestotnik

Jožef Stefan Institute, Ljubljana

on behalf of the Belle II ARICH group:

R. Pestotnik^a, I. Adachi^{b,c}, L.Burmistrov^d, F.Le Diberder^d, R. Dolenec^e, K. Hataya^f, S.Kakimoto^f, H. Kakuno^f, H. Kawai^g, T.Kawasaki^h, H. Kindo^c,T. Konno^h, S. Korpar^{i,a}, P. Križan^{e,a}, T. Kumita^f, Y.Lai^b, M.Machida^j, M. Mrvar^a, S. Nishida^{b,c}, K.Noguchi^f, K. Ogawa^k, S. Ogawa^l, L. Šantelj^a,T. Sumiyoshi^f, M. Tabata^g, S.Tamechika^f, M. Yonenaga^f, M.Yoshizawa^f,Y. Yusa^k

^aJožef Stefan Institute, Ljubljana, Slovenia, ^bHigh Energy Accelerator Research Organization (KEK), Tsukuba, Japan, ^cSOKENDAI (The Graduate University of Advanced Science), Tsukuba, Japan, ^dLaboratoire de Laccelerateur Lineaire (LAL), Orsay, France, ^eUniversity of Ljubljana, Slovenia, ^fTokyo Metropolitan University, Hachioji, Japan, ^gChiba University, ^hKitasato University, Sagamihara, Japan, ⁱUniversity of Maribor, Slovenia, ^jTokyo University of Science, Noda, Japan, ^kNiigata University, Niigata, Japan, ^lToho University, Funabashi, Japan

Outline

- ☐ Introduction
- □ Particle identification with aerogel RICH
- ☐ Calibration of the detector
- Before the installation
- With the collision data
- Particle identification efficiency determination
- Summary

Particle identification in Belle II

Two dedicated particle ID devices - both RICHes - designed to fit into available space:

- Barrel: imaging Time-Of-Propagation
 (TOP)
 Talk by Umberto Tamponi Monday
- End-cap: Proximity focusing Aerogel RICH (ARICH)

Talk by H. Kindo – Monday

Proximity focusing Aerogel RICH design

Goals and constraints:

- > 4 σ K/ π separation @ 1-3.5 GeV/c
- operation in magnetic field 1.5T
- limited available space ~280 mm
- radiation tolerance (n,γ)

Selected type:

proximity focusing aerogel RICH

- <n> ~ 1.05
- $\theta_c(\pi) \approx 307 \text{ mrad } @ 3.5 \text{ GeV/c}$
- $\theta_c(\pi) \theta_c(K) = 30 \text{ mrad } @ 3.5 \text{ GeV/c}$
 - pion threshold 0.44 GeV/c,
 - kaon threshold 1.54 GeV/c
- neutron fluence: up to ~1012 n/cm2
- radiation dose: up to ~1000 Gy

^{*} to increase the number of photons without degrading the resolution

Hybrid Avalanche Photo-Detector

- 144 ch. HAPD developed with the Hamamatsu Photonics
- Excellent separation of single photoelectrons
- Works in a magnetic field of 1.5T

Bi-alkali photocathode		Photon	HV ~ 7-8kV
	Bias 300V	pixelated APD)

Specifications			
Package	73×73mm2		
sensitive area	64%		
# of pixels	144(36×4chips)		
capacitance	80pF		
weight	220g		
peak QE	28%		
bombardment gain	1500		
avalanche gain	~30		
total gain	~45000		

Readout electronics

Front-end board with 4 ASICs and Spartan6 FPGA

limited space (~5cm) behind the HAPD

Front end Readout **Board**

• 36 channel ASIC (preamp., shaper and comparator) provides hit information.

Poster R. Pestotnik et al. Front end electronics of the Belle II ARICH

- settings: 4 step gain, 4 step peaking time, offset level
- peaking time >100 ns
- FPGA (Xilinx Spartan6):
 - hit detection and data transfer
 - coarse time-over-threshold measurement to discriminate between single Cherenkov photons from aerogel and the Cherenkov photons produced in the HAPD window
 - monitoring of supply voltages and temperature

Putting everything together

420 HAPD modules in 7 rings

Aerogel: 124x2 pieces n=1.045 and 1.055 -wedge shape, each layer 20mm thick

- 4 types depending on radius
- Cut out from square tile ~175 mm in side Poster by M. Tabata

Planar mirror particle

Cherenkov
photons

Aerogel Photon radiator detector

8

Timeline

Sept. 2017 : ARICH installed in the Belle II spectrometer

Sept.-Dec. 2017: connection of the power supplies and tests of the electronics

Winter 2018 : Cosmic ray tests

Apr.- Jul. 2018 : Phase II run (Belle II detector w/o pixel detector)

Autumn 2018 : Access to the detector – tests of several components, upgrade

of the cooling system.

First data

Important milestone achieved: Observation of

Cherenkov rings during the Cosmic and Beam runs

This pictures are of course not enough to identify particles

- For each particle hypothesis (e,mu,pi,K,p) evaluate a likelihood function
- Determine momentum dependent threshold based on the sample of independently identified particles
- Determine the identity
- How do we construct the likelihood function?

Likelihood construction

Small number of tracks, overlap of rings from different particles not very likely

 p_i – probability that a a pixel i was hit distributed binomially n_i - expected i.e. calculated average number of hits on the particular pixel m_i – measured number of photons in the particular pixel

$$p_i = \frac{e^{-n_i} n_i^{m_i}}{m_i!} \qquad p_i = \begin{cases} e^{-n_i} & \text{for } m_i = 0 \text{ non hit pixels,} \\ 1 - e^{-n_i} & \text{for } m_i > 0 \text{ hit pixels.} \end{cases}$$

$$L = \prod_{\text{all pixels}} p_i = \prod_{\text{not hit i}} p_i \prod_{\text{hit i}} p_i = \prod_{\text{not hit i}} e^{-n_i} \prod_{\text{hit i}} (e^{n_i} - 1)$$

$$lnL = -\sum_{\text{not hit i}} n_i - \sum_{\text{hit i}} n_i + \sum_{\text{hit i}} n_i + \sum_{\text{hit i}} ln (e^{n_i} - 1)$$

For a given hypothesis:

N number of expected hits = sum of expected average number of hits on the detector

$$lnL = -N + \sum_{\text{hit } i} n_i + ln \left(e^{n_i} - 1 \right)$$

Likelihood construction II

Advantage of this procedure:

one now has to calculate the average number of hits n_i only for the hit pixels.

$$lnL = -N + \sum_{\text{hit } i} n_i + ln\left(e^{n_i} - 1\right)$$

*n*_i is a sum of a signal and background contribution

$$n_i = n_s^i + n_b^i$$

Signal contributions from different radiators

$$n_s^i = \sum_r n_{s,r}^i$$

$$n_{s,r}^i = \varepsilon_i n_{t,r} \int_{\Omega_i} S_r(\theta_r, \phi_r) d\theta_r d\phi_r$$

$$n_{s,r}^{i} = \varepsilon_{i} n_{t,r} \int_{\Omega_{i}} S_{r}(\theta_{r}, \phi_{r}) d\theta_{r} d\phi_{r} \qquad S_{r}(\theta_{r}, \phi_{r}) = \frac{1}{2\pi} \frac{1}{\sqrt{2\pi}\sigma_{\theta_{r}}} e^{-\frac{(\theta_{r} - \theta_{r}^{h})^{2}}{2\sigma_{\theta_{r}}^{2}}}$$

 Ω_i Solid angle of a single pad

 $\sigma_{ heta_r}$ Single photon resolution without pad size uncertainty

can be calculated analytically

Monte Carlo performance

Detailed simulation performed in the Belle II software framework - BASF2

K id. Eff. for p=3-4 GeV/c 1% pion fake

Excellent PID efficiency over wide momentum range.

Homogeneous response over the sensitive area of the detector (1 sextant is shown)

Calibration of the detector

Why? Impact of a calibration on separation capabilities

Quantities from the likelihood function:

$$n_i = n_s^i + n_b^i \qquad \qquad n_s^i = \sum_r n_{s,r}^i \qquad \qquad S_r(\theta_r, \phi_r) = \frac{1}{2\pi} \frac{1}{\sqrt{2\pi}\sigma_{\theta_r}} e^{-\frac{(\theta_r - \theta_r^n)^2}{2\sigma_{\theta_r}^2}}$$

Non calibrated detector:

- number of signal photons: not well known &smaller
- Backgrounds : not well known & higher
- Width of the PDF: not well known & larger

Lower identification efficiencies, higher misidentification probabilities

Three stages of calibration:

- I. Calibration of operational parameters before the installation
- II. Calibration of the detector with the detector data: Online/Offline
- III. Determination of the efficiency and misidentification probabilities by using particles unambiguously identified without RICH

I. Calibration of parameters before the installation

Measurements for each sensor:

- Operation parameters (HV, APD bias Voltage)
- Position dependence of QE, PDE and gain
- Response in the magnetic field

Monitor output of an individual channel

All the measurements are stored in the **Belle II database** and some are used during the reconstruction:

- PDE,
- hot and dead channels

Average QE on the detector

Calibration with the data

switch on

Constant monitoring and update of run operation parameters:

- HAPD: HV and bias
- Electronics: Power supply and temperatures
 - FPGA:
 - sampling frequency,
 - delay relative to trigger signal,
 - SEU detection and repair (due to neutron backgrounds)
 - ASIC: Gain, Channel offsets, Threshold

Special calibration runs will be performed regularly once per day/week.

Calibration with special runs with LED illumination

During the calibration run the surface of the aerogel plane is illuminated by LED light (λ =470nm) distributed by optical fibers to several points on the detector.

The reflected light is registered by the HAPD sensors and allows calibration before physics data taking:

- Determine hot and dead channels
- By measuring the response for different thresholds:
 - Relative sensitivity, gain and offset for each channel can be determined

New set of configuration parameters can be uploaded through the DAQ to the ASICs/FPGAs on the front end boards.

Talk by M. Yonenaga, Tuesday

Channel Calibration

Adjusting offsets for 6 FEB (controlled by one of the 72 merger boards)

Non aligned

Aligned - the offset settings adjusted

After offsets are adjusted and threshold set: determine hot and dead channels

Still many dead areas due to problems with individual merger boards to be repaired during shutdown

Calibration with the data

During the normal data taking the data are monitored constantly:

- On event by event basis :
 - HAPDs with too many hits are not used in the identification algorithm
 - If the readout module stops responding it is also masked out (SEU not correctable events) until the next firmware reset)
- For every run: Dead and hot channel masks are calculated and used in the reprocessing (we do not expect the number of dead and hot channels will be changing significantly)

Alignment of mirrors and sensors

Due to misalignment the azimuthal dependence of the Cherenkov angle distribution is not constant

$$\theta_c = p0 + p2\sin(\phi_c - p1)$$

Global alignment:

determine shifts wrt tracking

Local alignment:

By limiting the track impact position to different regions, we will determine

- displacements of
 - mirrors,
 - sensors
- distortions due to magnetic fields

Preliminary results for segmenting detector to several parts

shifts are bellow 1 mm

Poster S. Tamechika et al. → Alignment algorithm of Belle II ARICH

Efficiency determination

use the decays where we can identify the decay products independently from RICH: e.g.. $D^{+*} \to D^0 \pi_s^+$ + charge conjugated mode

$$D^0 \to K^-\pi^+$$

The charge of the slow pion determines the identity of the particles from the D⁰ meson decay.

Efficiency determination by fitting the D^0 invariant mass before and after the PID cut (tested on MC events)

Entries / 6 MeV/c²

Efficiency determination from data

The measured D^0 mass from first reconstructed D* decays from beam collisions

We expect to get preliminary results after data reprocessing

Summary

- Proximity focusing RICH with aerogel as the radiator installed in the Belle II spectrometer for efficient particle identification in the forward end-cap of the Belle II spectrometer
- For an efficient PID, the detector requires a calibration in order to:
 - Determine and minimize the Cherenkov angle resolution
 - Determine and minimize the background
 - Determine and maximize the number of detected Cherenkov photons quantities that directly impact the identification algorithms
- After the calibration we expect to meet the expectations from beam tests and Monte Carlo studies and an excellent kaon identification efficiency of more than 90% over a wide range of momenta at a rather low pion misidentification probability of 2%.
- Based on the experiences with running the detector in the past 3 months we will establish the calibration procedures to ensure optimal operation of the detector in the next run, starting in February 2019