Photonic crystals as novel radiators

RICH 2018 conference Moscow, Russia

On behalf of: S.Easo, X.Lin, I.Kaminer, M.Blago et.al.

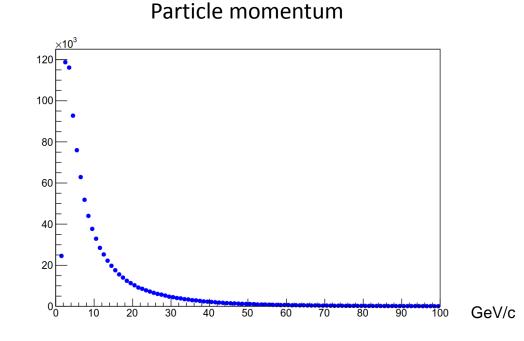
Sajan Easo 04-08-2018

Outline

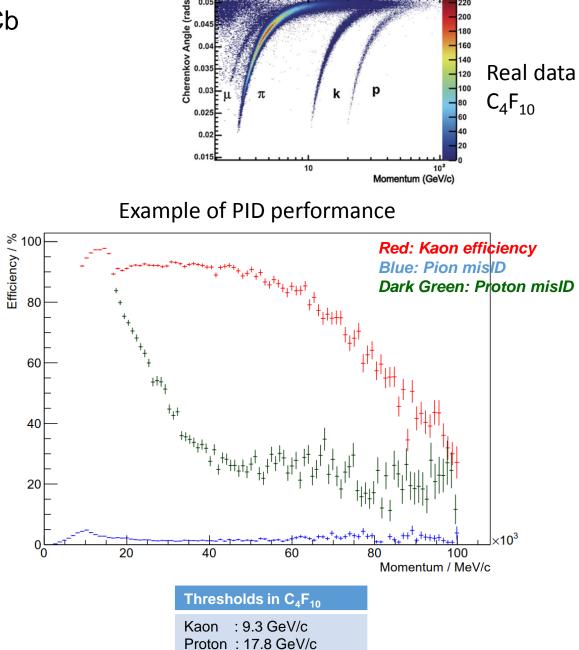
- Limitations of conventional radiators
- Photon production and propagation from photonic crystals
- Example configurations for particle identification
- Issues for design and optimization
- Testing with prototypes

Some limitations of conventional radiators

- For identification of particles with momenta in GeV/c range:
 - Dearth of materials to cover the full momentum range 1-10 GeV/c

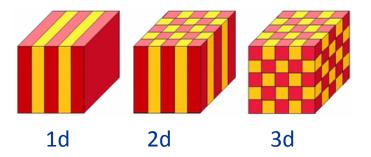

limited set includes Quartz (n~1.47), aerogel (n~1.03)

- Above 10 GeV/c, long gas radiators are used (n ~ 1.0013 or lower); thin radiators are desirable
- Electron-pion discrimination difficult for momenta above a few GeV/c


- Dielectric materials with n > ~ 1.8 not suitable:
 - Saturated Cherenkov angles for most of the momentum range
 - Photon trapped inside due to total internal reflection at the boundary with ambient air/gas Exception: DIRC like configuration for limited momentum region

Radiator limitation in LHCb

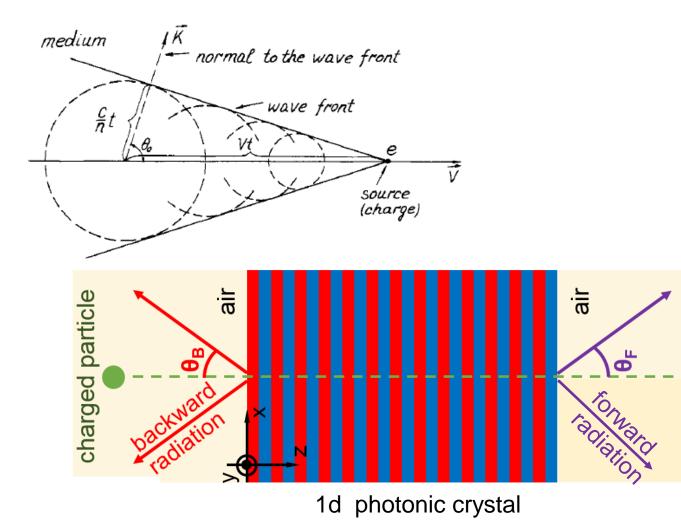
Large number of particles in low momentum range



- For now, using 'veto mode' for PID in low momentum
- Aerogel was used in RUN1 , but was removed in 2015
- Illustration using LHCb upgrade configuration

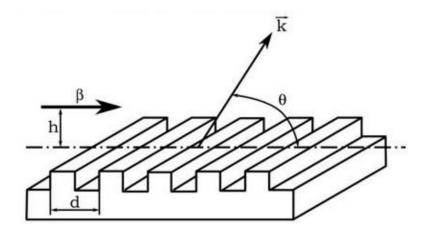
Radiator R&D

- One approach:
 - Assemble materials to produce the desired 'effective refractive index'
 - Requires designing photonic crystals from transparent dielectrics



- Photonic Crystals :
 - Typically made from two materials with different refractive indices, in alternating layers.
 - The magnitude of layer thickness is similar to that of the photon wavelengths.
 - Production of layers as thin as optical wavelengths, feasible in recent years. This creates the current interest in using the crystals, as radiators
- This presentation:
 - Concept and prospects for this approach

Photon Production


Conventional Cherenkov Radiation:

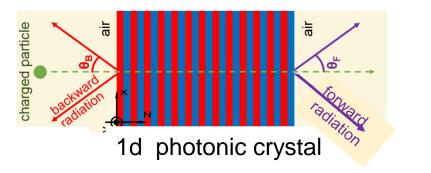
• Frank and Tamm theory

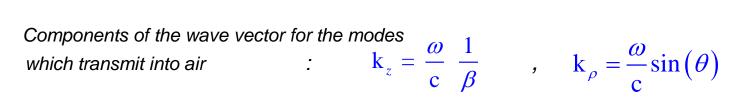
Smith-Purcell Radiation :

• Particle travels near a diffraction grating

Resonance Transition Radiation :

• Has the features of conventional Cherenkov radiation


Photon production from photonic crystal


- Photon production and propagation in a periodic structure can be determined from solving Maxwell's equations. This extends the *Ginzburg and Frank* theory on transition radiation.
- This results in a linear equation:

$$\nabla \times \nabla \times - \left(\frac{\omega}{c}\right)^2 \varepsilon(\vec{r}) \vec{E}(\vec{r}) = i\omega\mu_0 \vec{J}(\vec{r})$$

To be solved using boundary conditions.

- Solution: Particle generates Bloch modes of the crystal which have the form:
- For a particle traversing a 1d photonic crystal along z :

Here θ = effective Cherenkov angle at exit from crystal into air

 Periodicity leads to coherent interference of electromagnetic waves in the air, from the various interfaces *Constructive interference* : Resonance Transition Radiation

- $\vec{E},\,\vec{H}$: electric and magnetic fields
- $\varepsilon, \mu =$ permittivity, permeability, \vec{J} =current density
- z, ρ : directions along and normal to that of the particle

 $\vec{E}(\vec{r}) \exp\left(i(\vec{k}.\vec{r}-\omega t)\right)$

 ω ,k : frequency, wave vector

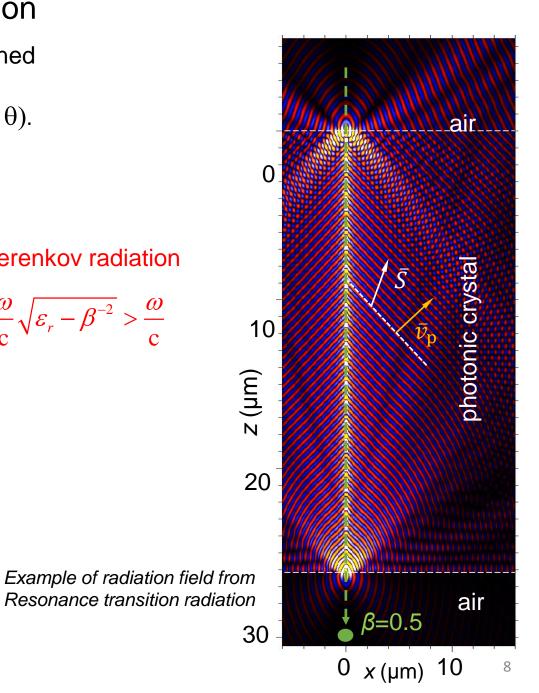
Resonance Transition Radiation

- From the solution, the energy radiated into air can be determined
 - Involves integrating over angular spectral energy density, which is the distribution of radiation as a function of (ω, θ) .

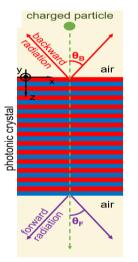
• In this context, Poynting vector:
$$\vec{S} = \frac{1}{2} Re \left[\vec{E} \times \vec{H}^*\right]$$

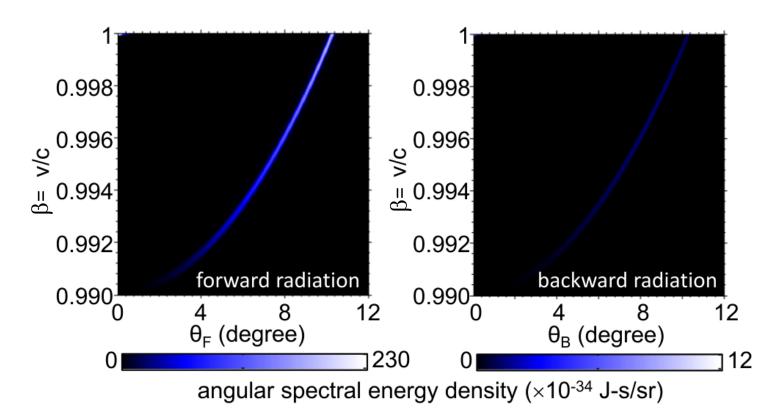
Typically use ε_{r1} , $\varepsilon_{r2} >>1$. Hence conventional Cherenkov radiation gets trapped inside due to total internal reflection :

$$x_{\rho} = \frac{\omega}{c} \sqrt{\varepsilon_r - \beta^{-2}} > \frac{\omega}{c}$$


Solutions for the 1d system are described in a recent paper:

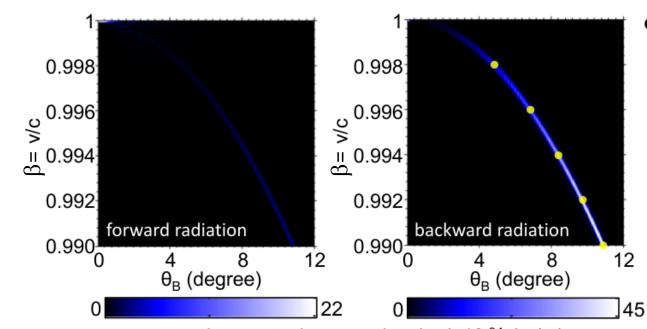
"Controlling Cherenkov angles with resonance transition radiation", X.Lin, S.Easo, Y.Shen, H.Chen, B.Zhang, J.D.Joannopoulos, M.Soljacic, I.Kaminer,


Nature Physics 14, 816-821 (2018)


https://doi.org/10.1038/S41567-018-0138-4 also

Some inferences from this paper, in the following pages

Forward configuration : example


- Constructive interference in the forward radiation: strong signal
- Destructive interference in the backward radiation: weak signal

Forward: $\theta_{\rm F}$ increases with $\beta = v/c$

Example configuration 1:

Overall thickness = 2 mm, $\varepsilon_1 = 10.6$ (GaP), $\varepsilon_2 = 2.1$ (SiO2) Forward setup: 2800 periods with (214.3 nm+ 500nm)

angular spectral energy density (×10⁻³⁴ J-s/sr)

- Destructive interference in the forward radiation: weak signal
- Constructive interference in the backward radiation: strong signal

Backward: $\theta_{\rm B} = 180^{\circ} - \theta_{\rm F}$, $\theta_{\rm B}$ decreases with $\beta = v/c$

Example configuration 2:

charged particle

Overall thickness = 2 mm, ε_1 = 10.6 (GaP), ε_2 =2.1 (SiO2) Backward setup: 10200 periods with (117.3 nm+ 78.1nm)

Results from different particle types

12 10.3° 10 electron 0.20 pion θ_F (degree) 8.70 8 kaon θ_{B} (degree) proton 5 electron 3.58° pion kaon 88 proton 00 480 0 20 10 60 20 momentum (GeV/c) momentum (GeV/c)

Backward configuration example

- The features are similar to those of conventional Cherenkov radiation
- Can be configured for different momentum ranges

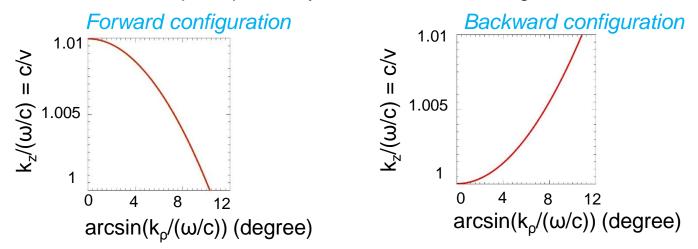
Forward configuration example

Another option

- Existence of negative index of refraction, first proposed by Victor Veselago in 1968.
 - Experimentally verified in 1999-2000, and gave rise to the creation of meta materials
- Meta materials:
 - Layer thickness smaller than the wavelengths considered
 - Particles 'see' an 'effective medium' instead of the atoms
 - Normally made from resonant structure of metallic wires or nanomaterials
 - They can also have positive refractive index.
- Proposal to use meta materials as radiators for Cherenkov detectors :

"Controlling Cherenkov radiation with transformation-optical metamaterials"

Ginis V., Danckaet J, Veretennicoff I., Tassin P. Phys. Rev. Lett. 113, 167402 (2014).


• The meta materials suggested for this are made from highly anisotropic materials. Effective refractive index near 1.0 along one axis and large values along other axes. more info : Backup pages, paper listed on page 8

- This leads to "photon loss" at optical frequencies and thus the Cherenkov signal is significantly reduced. Hence, for now, the option to use meta materials is not pursued.
- On the other hand, photonic crystals are made from 'almost' transparent dielectric materials and hence the photon loss is minimal. So this option is pursued.

Designing photonic crystals

• Normally a crystal may be designed for a specific momentum range of particles

It is envisaged to be used in forward or backward configuration, in a given momentum range In principle, a crystal can even be designed for forward/backward in different momentum ranges

- For any design:
 - Find materials with the appropriate refractive indices
 - Optimize the layer thickness, number of layers etc.
 - Optimize for optical/near-UV frequencies where the photon detectors are sensitive
- In general, numerical solutions needed using software frameworks:
- FDTD (Finite Difference Time Domain)
- COMSOL

- Proprietary software:

 Analytical solution for 1d system
 - Allows simulation and design of 1d photonic crystals

Theory to Practice

> Production:

- Crystals need to be designed and produced
- This requires R&D

1d crystals:

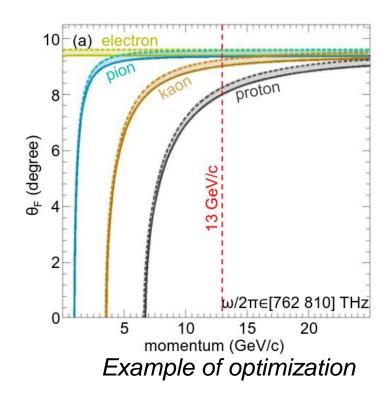
- Can be produced in large scales
- Use techniques like optical lithography, 3d printing
- Some of these can attain single nanometer precision in layer thickness
- Using some type of polymers, also seems to be an option for large areas

Zhurin et.al., J.Vac. Sci.Tech. A 18, 37-41 (2000) Ponting. M. et.al., Macromol. Symp. 294-1, 19-32(2010)

- \geq 2d crystals:
 - Only produced in small scales so far.
 - Typically a periodic array of holes. They can be made thinner than 1d crystals

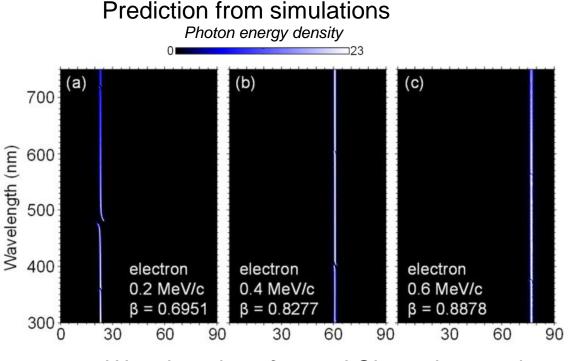
Phys. Rev. E 72, 010902(2005)

Examples of natural photonic crystals

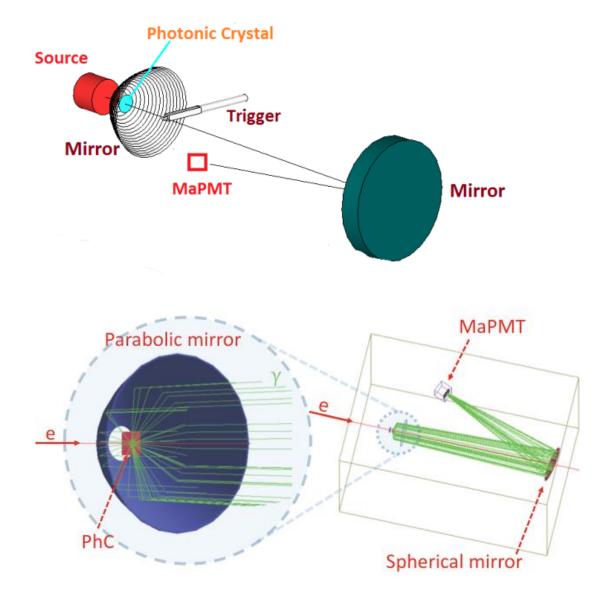


Theory to Practice

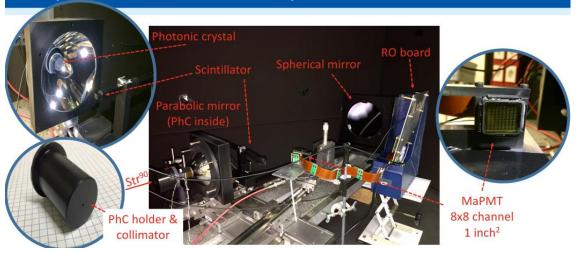
- Issues in optimizing a design:
 - Periodicity can cause chromatic error, depending on the configuration
 - Many options to mitigate this effect.
 - Use materials with anisotropy, which can directly compensate for the achromaticity from periodicity
 - Use filters to use only a small wavelength range


- Improving photon yield:
 - Increase the number of layers
 - Upper limit from limitations of manufacturing and material budget
 - Use gain materials, which can increase the yield in a small wavelength range

- Ensure radiation hardness:
 - There are many low Z materials to create the crystals from. (SiC, SiO₂ etc.)
 - They would need to be tested for radiation hardness


Testing Prototypes

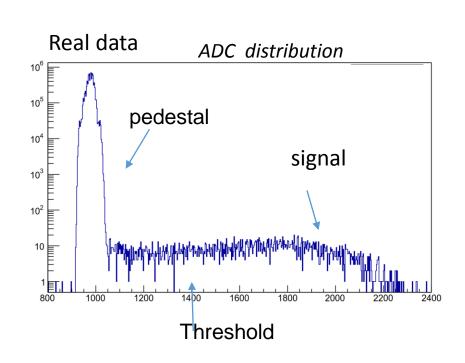
- Goal: To verify the predictions from simulations R&D work in early stages
- Few 1d samples obtained from industry
- Example used here:
 - PVDF (n1=1.414) + PET (n2=1.567)
 1024 layers, each with 250 nm thickness
 - > This sample has negligible chromatic error
 - Sensitive to low momentum particles from a radio active source



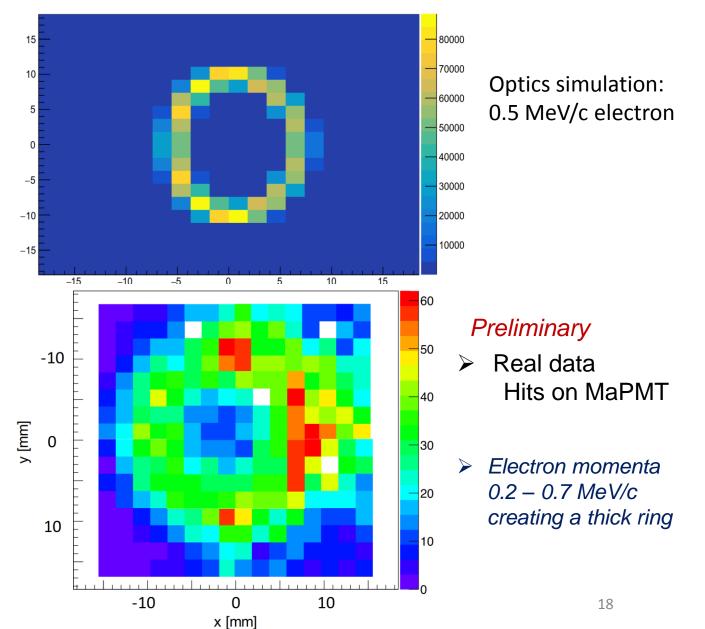
Wavelength vs forward Cherenkov angle

Testing Prototypes

Experimental set-up



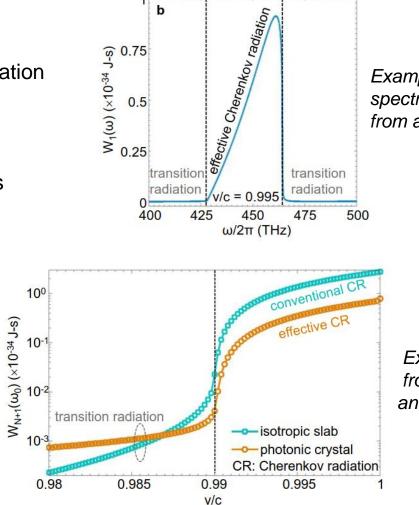
With support from D.Piedigrossi, S.Jakobsen , F.Cindolo et.al.


- Using Sr-90 source to produce electrons
- DAQ : MaPMT with MAROC2+FPGA

Testing Prototypes

Simulation: Hits on detector plane

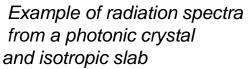
- Further R&D in progress to improve this
- Plan to test more prototypes

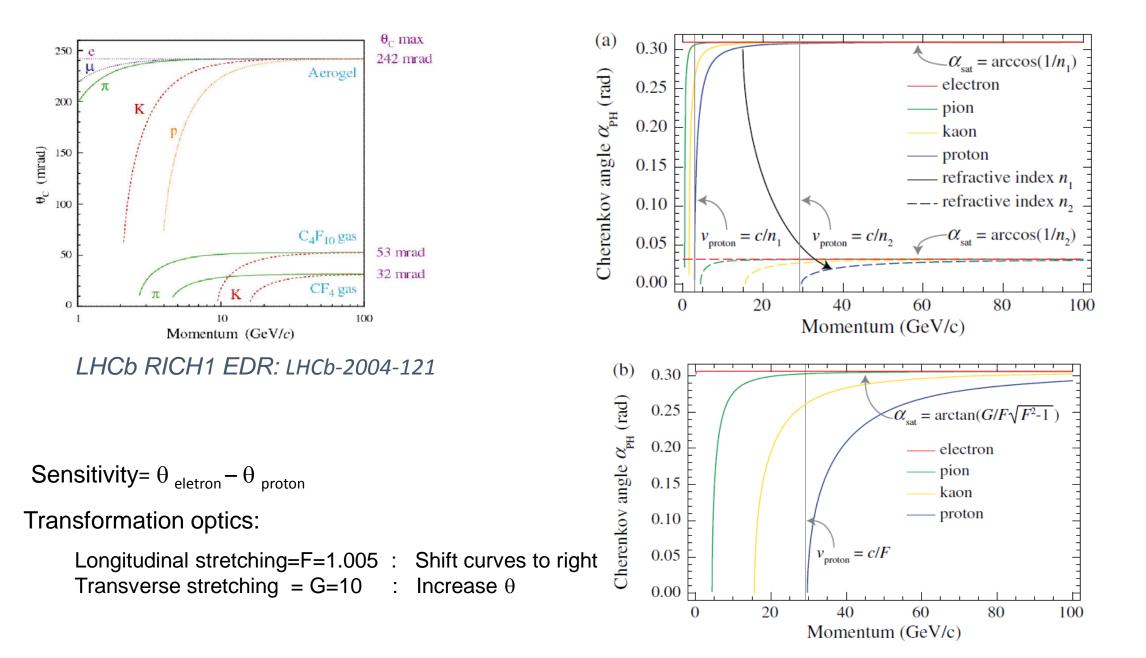

Summary

- It would be desirable to develop radiators which can overcome the limitations of conventional radiators
- Using photonic crystals made from transparent materials is a potential option for this
- The concept for usage of such crystals for particle identification is described
- Issues related to optimizing a design, are being considered
- Tests with prototypes have started

Backup slides

Comparison between different radiations


- From a photonic crystal:
 - □ Constructive interference:
 - Resonance transition radiation occurs ٠
 - "Effective Cherenkov radiation" since it has • the features of conventional Cherenkov radiation
 - Has a threshold for particle velocity
 - Destructive interference:
 - Conventional transition-like radiation occurs ٠
 - Has no threshold for particle velocity ٠


b

Example of radiation spectrum from a photonic crystal.

- Isotropic medium:
 - Conventional Cherenkov and transition radiation occurs

Meta materials: Particle Identification

