

Efficiency of a Cherenkov based PET module with an array of SiPMs

<u>R. Dolenec</u>^{a,*}, T.Iijima^b, S. Korpar^{c,d}, R. Pestotnik^d, P. Križan^{a,d}

^a Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
 ^b Department of Physics, Nagoya University, Japan
 ^c Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia
 ^d J. Stefan Institute, Ljubljana, Slovenia

<u>* e-mail: rok.dolenec@fmf.uni-lj.si</u>

Outline

- Time-of-flight (TOF) positron emission tomography (PET)
- Use of Cherenkov radiation for TOF PET
- Previous experiments
 - microchannel plate photomultipliers (MCP PMT) as photodetectors
 - silicon photomultipliers (SiPM) as photodetectors
- 16 channel Cherenkov PET module
 - measurements of detection efficiency
- Summary

Positron emission tomography

- Positron emission tomography (PET)
 - medical physics modality, enabling in-vivo imaging of biological processes via coincident detection of 511 keV annihilation γ rays
- Time-of-flight (TOF)
 - measurement of arrival times of the two γ can be used to limit the reconstructed position of annihilation
 - improves the quality (contrast-to-noise ratio) of reconstructed images

Philips Gemini TF PET/CT, TOF resolution of 600 ps [PET Center of Excellence Newsletter, Vol.3 Issue 3 (2006)]

Efficiency of a Cherenkov based PET module with an array of SiPMs

• γ detectors in traditional PET: scintillator crystal + photodetector

5.1	7.77
0.43	1.06
	0.46
17	-
30,000	10 (‡)
)	17

(*) [XCOM: Photon Cross Sections Database]

(^{‡)} in 250-800 nm wavelength interval

- Lead fluoride (PbF₂) crystal
 - exclusively Cherenkov light produced (prompt)
 - excellent properties for stopping 511 keV annihilation γ
 - excellent light transmission (down to 250 nm)
 - low cost
 - low light yield single photon detection

Previous results (MCP PMT)

- Two detectors in back-to-back configuration
- Cherenkov radiators
 - 25x25x5 or 25x25x15 mm³ PbF₂
- Photodetectors
 - microchannel plate photomultiplier tubes (MCP PMTs)
 - single photon timing ~ 50 ps FWHM
 - active surface 22.5x22.5 mm²
- TOF (coincidence) resolution:
 - **71 ps FWHM** (5 mm thick, black painted PbF_2)
 - **95 ps FWHM** (15 mm thick, black painted PbF₂)
 NIM A 654 (2011) 532
- Low efficiency ~ 6% (single side)
 - traditional scintillation detectors ~ 30%

Previous results (SiPM)

- Two detectors in back-to-back configuration
- Cherenkov radiators: 5x5x15 mm³ PbF₂
- Photodetectors: 3x3 mm² silicon photomultipliers
 - cooled to -25°C (SiPM dark counts)

- TOF (coincidence time) resolution:
 - 306 ps FWHM (AdvanSiD, black paint)
- Efficiency:
 - 30% single side (SensL-J, Teflon wrapped)

Efficiency of a Cherenkov based PET module with an array of SiPMs

Summary of previous results

- Excellent TOF PET timing achievable using exclusively Cherenkov light:
 - 95 ps FWHM coincidence timing with 15 mm thick PbF₂ (~ γ stopping power of 20 mm of LSO)
 - Cherenkov considered for the goal of 10 ps TOF PET [P. Lecoq] _
- Very few (single) photons
 - efficiency an issue
- Silicon photomultipliers
 - Cherenkov PET efficiency competitive to scintillators (~30% single side)
 - timing an issue (especially with configuration optimized for efficiency)
- Cost of $PbF_2 \sim 20\%$ of LSO (cost of scintillator ~ 50% of PET scanner)
 - lower cost PET scanners
 - total-body PET scanners [S. Cherry]
- Our next step
 - PET module, optimized of efficiency and price

[Cherry et al., The Journal Of Nuclear Medicine, Vol. 59, No. 1 (2018)]

16 channel PET module

- Cherenkov radiators
 - 4x4 array of 3x3x15 mm³ PbF₂
 - [Shanghai SICCAS High Technology Corporation]
 - white reflector (black paint where noted)
- Photodetectors
 - 4x4 array of 3x3 mm² SiPM
 - Hamamatsu MPPC S13361-3075AS-04
 - 75 µm pixels (1600 / 3x3 mm²)
 - peak sensitivity ~ 50% PDE @ 450 nm
 - breakdown voltage ~ 53 V
 - dark count ~ 0.5 Mcps (/ $3x3 \text{ mm}^2$), crosstalk prob. ~ 7% (overvoltage V_{ov} = 3 V)
- Custom connector board
- 3D printed crystal supports
- SiPM bias provided by readout module EASIROC

Readout - EASIROC

- EASIROC chip [OMEGA group]
 - Extended Analogue Silicon pm Integrated Read Out Chip
 - 32 channel ASIC dedicated to read-out of SiPM detectors
 - Internal input 8-bit DAC for individual SiPM gain adjustment
 - Individually addressable calibration injection capacitance
 - Energy measurement : 14-bit dynamic range
 - Trigger output
- EASIROC module [Osaka, KEK]
 - 2 x 16 channels per module
 - SiPM bias supply, adjustable by 4.5V for each channel
 - ADC,12bit, dual range
 - LVDS trigger outputs (for external TDC)
 - possibility to perform TDC in FPGA (~ 1ns resolution)
 - Ethernet connection to PC

Experimental setup

- Cherenkov detector:
 - 4x4 array of 3x3x15 mm³ PbF₂
 - 4x4 array of 3x3 mm² SiPM
- Reference detector
 - 3x3x30 mm³ LYSO scintillator
 - 3x3 mm² SiPM
- Annihilation γ source
 - 22 Na point source (D = 0.3 mm)
 - activity = 0.6 MBq
- Temperature: -25°C (SiPM dark counts)

Laser calibration

- Laser illumination instead of reference scintillation detector
 - ~1 mm laser spot scanned over each SiPM array channel center (w/o PbF₂ crystals)
 - gain ~ (ADC 1 p.e. peak) (ADC noise peak)
 - adjusted for each channel

Channel

3

13 14 1 12 15 0

Detection efficiency estimation

• Geometrical collimation of coincidences - reference detector further away from the source

- When the reference scintillation detector is hit with one 511 keV γ, the other annihilation γ hits the Cherenkov detector
 - reference detector hit: event cut within $\pm 1\sigma$ of 511 keV photopeak
 - corrected for estimated 1275 keV γ ($^{22}Na)$ Compton contribution
 - Cherenkov detector hit: TDC within 30 ns

• corrected for noise, estimated from constant fit in off-time window

Results: source position on channel / off channel

Efficiency of a Cherenkov based PET module with an array of SiPMs

Results: efficiency map

8

4

- Efficiency of each channel when collimated with the source
 - average = 28.4% (previous single ch. result ~ 25% 30%)

* ch.0 next to ground - more noisy; ch.15 TDC not connected

3

Results: cross talk

5

- Efficiency of channel 7, for all 16 source positions ۲
 - nearest neighbors average 26% crosstalk
 - diagonal neighbors average 7% crosstalk

- Sources of crosstalk: •
 - miss-collimation
 - optical leakage between channels
 - Compton scattering

Results: cross talk - miss-collimation

- When reference detector moved further away
 - nearest neighbors average 22% crosstalk
 - diagonal neighbors average 5% crosstalk

5 6

Results: cross talk - optical leakage between channels

- Crystal array black painted instead of white reflector
 - nearest neighbors average 11% crosstalk
 - diagonal neighbors average 0% crosstalk

Results: efficiency map for black painted array

- Efficiency of each channel when collimated with the source •
 - average = 6.9% (previous single ch. result ~ 5% 8%)
 - much less homogeneous results

5

4

• lower quality of crystal array assembly

Efficiency of a Cherenkov based PET module with an array of SiPMs

Results: cross talk

• Source scanned over one column of SiPM array

Efficiency of a Cherenkov based PET module with an array of SiPMs

Results: cross talk

• Source scanned over one column of SiPM array - black painted array

Efficiency of a Cherenkov based PET module with an array of SiPMs

Results: efficiency vs. SiPM overvoltage

Average efficiency over all (15 connected) channels ٠

white reflector; T = $-25^{\circ}C$

Summary

- Use of Cherenkov light in PET
 - TOF resolution <100 ps FWHM (limited efficiency)
 - efficiency 30% single side (limited TOF resolution)
- Low cost of PbF₂
 - reduce cost PET of scanners (limited TOF, but still competitive performance)
 - total-body PET scanners
- 16 channel PET module
 - 4x4 array of 3x3 mm²
 - PbF₂ Cherenkov radiator + SiPM photodetector
 - eficiency 28% single side
 - good uniformity
 - optical crosstalk between channels should be reduced
- Next steps
 - 2-4 modules in coincidence
 - study effects of Compton events

