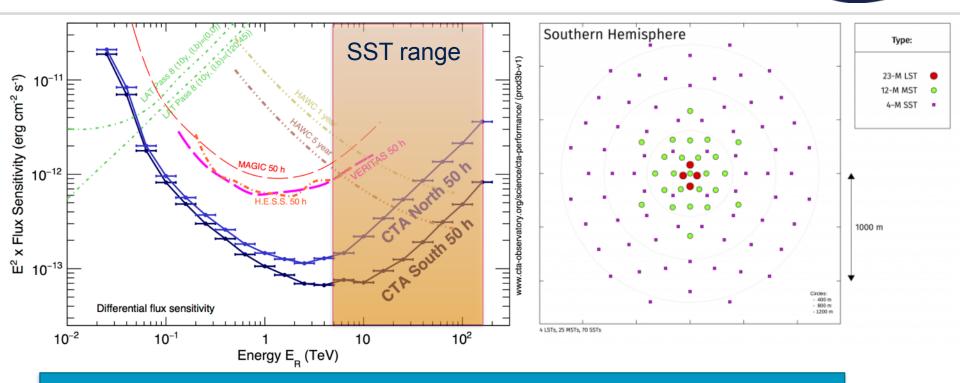
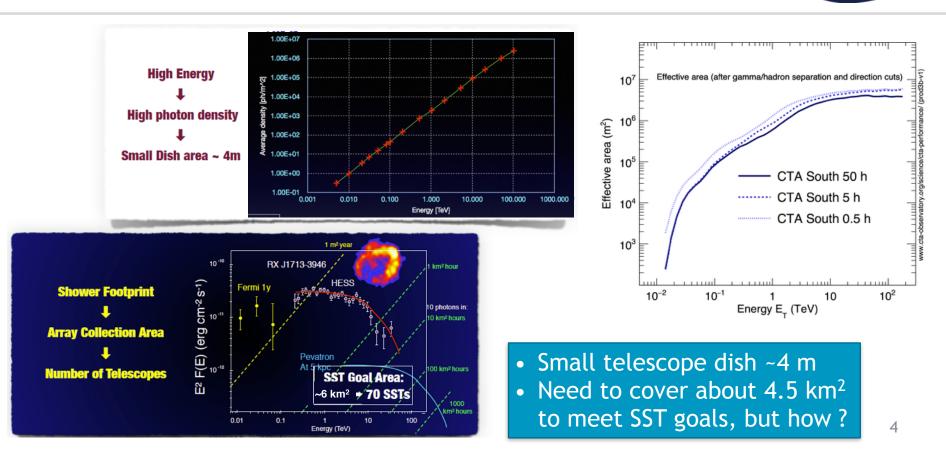


cherenkov telescope array

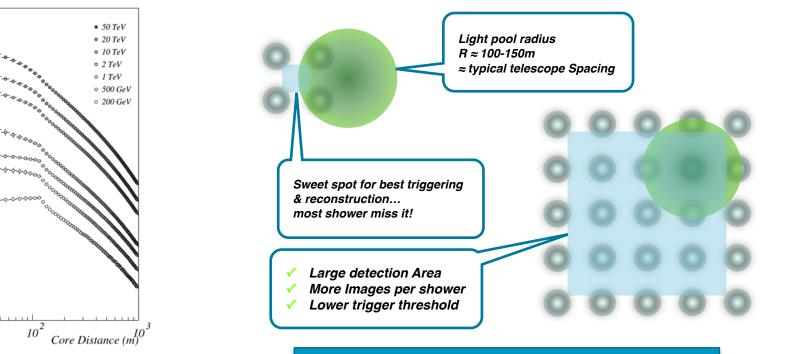
The Small Size Telescopes for the Cherenkov Telescope Array

10th International workshop of Ring Imaging Cherenkov Detectors Moscow, 29/07/2018 to 4/08/2018


Matthieu HELLER for the CTA consortium


- Why do we need Small Size Telescopes ?
- SSTs designs
 - Structure
 - Optics
 - Camera
- SSTs performance
- First light and commissioning

Why do we need Small Size Telescopes



How does that translate into a telescope array: Light collection area, number of telescopes, inter telescope spacing

Why do we need Small Size Telescopes

Why do we need Small Size Telescopes

High energy showers are visible at large distances

Density (pe/m^2)

 10^{2}

10

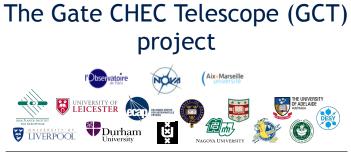
10

 10^{-2}

a

70 SST telescopes to cover ~4.5 km² Spacing of ~250 m

The SST projects design


The ASTRI project

INAF
 ISTITUTO NAZIONALI
 DI ASTROFISICA
 NATIONAL INSTITUTE
 FOR ASTROPHYSICS

Universidade de São Paulo

The SST-1M project

The ASTRI structure and optics

The prototype is placed at 1725 meters on the Etna volcano @ INAF-Catania mountain station in Serra La Nave

- Schwarschild-Couder design:
 - Average effective mirror area: 5 m² (incl. mirror reflectivity and shadowing)
 - FOV: 10.5°
 - PSF @ 100% FoV diameter: 0.19°
 - Primary mirror:
 - 4.3 m diameter
 - 18 hexagonal aspherical panels arranged in three concentric rings
 - Cold slumping
 - AI+SiO₂ coating (90 % reflectivity)

- Telescope structure
 - Alt-azimuthal mount
 - Height of the Telescope:
 - pointing horizontally: 7.5 m
 - pointing vertically: 8.6 m
 - Total mass: 19 t
 - Encoder precision: 2 arcsec
 - Tracking precision: < 0.1°
 - Motors & drivers: SEW
 - Control PLCs: Beckhoff

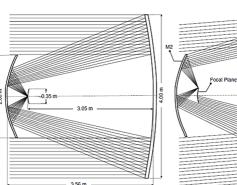
- Secondary mirror

- 1.8 m diameter
- Monolithic aspheric
- Hot slumping
- AI+SiO2 coating

The GCT structure and optics

GCT prototype equipped with the CHEC-M camera at the **Observatory of Paris** site (Meudon, France).

- Compact (4.1 m x 5.7 m x 8.5 m) and light structure (< 11 t)
- Two torque motors per axis and same worm gear assembly used for elevation and azimuth axes providing symmetry in the alt-az mount
- Focal length: 2.28 m, f/D: 0.57
- Schwarzschild-Couder optical design, never built before the advent of CTA, suitable for gamma-ray astronomy with the following advantages:


 - Large FoV (>8°), good angular resolution for VHE over full FoV
 Average effective mirror area of 4.9 m² (incl. mirror reflectivity and shadowing)
 - Reduction of the focal length physical pixel size compact camera and structure
 - Cost-optimisation and upgradability possibilities (SiPM technology evolving rapidly)

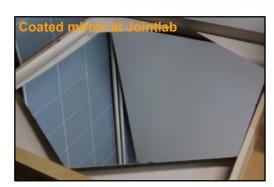
- GCT Primary mirror Ø 4m

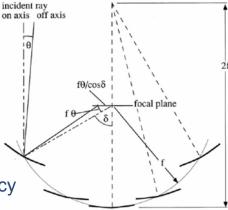
- Tessellated in 6 identical panels
- Lightweight aspheric Aluminium mirrors (89% reflectivity, scattering to be improved with future generation)
- Each panel is held at three points by an active mirror control system (AMC) made of 1 fixed point and 2 actuators

GCT Secondary mirror Ø 2m

- Lightweight aspheric Aluminium mirror (87% reflectivity, scattering to be improved with future generation)
- > Segmented for manufacturing purposes, its six high-precision segments are bolted together and behave like a monolithic mirror

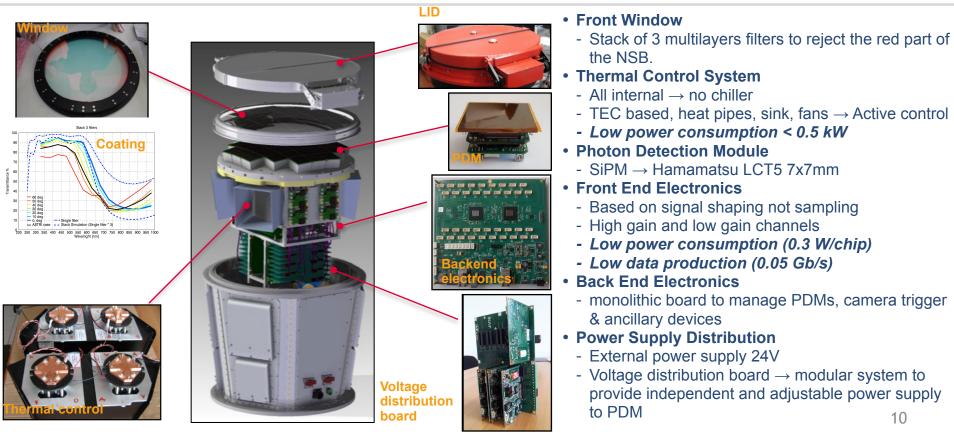
The SST-1M structure and optics

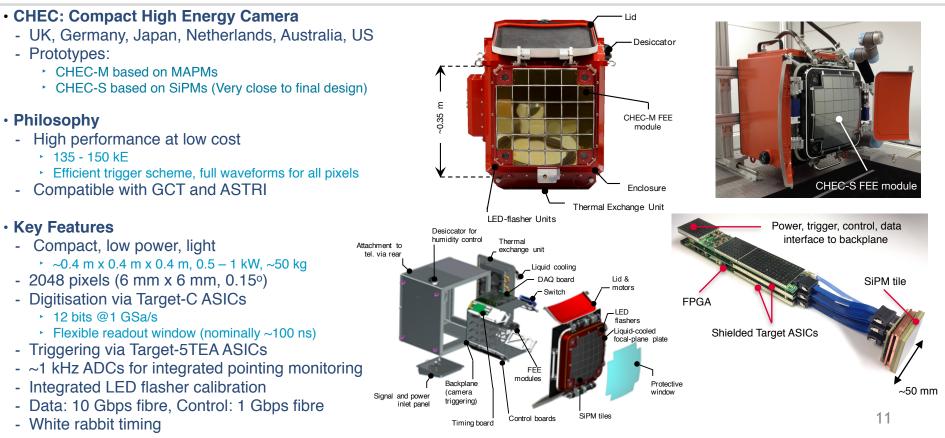


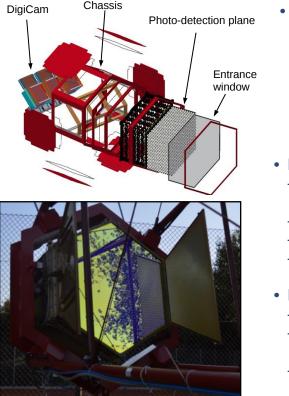


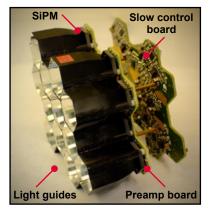
- Mirror dish:
 - 18 hexagonal facets for an average effective mirror area of 6.46 m² (incl. mirror reflectivity and shadowing)
 - Glass substrate
 - Al-SiO₂ coating providing > 90% reflectivity
 - AMC system composed of 3 actuators

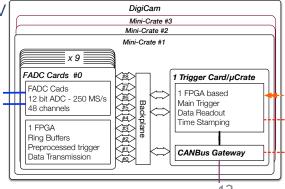
- 4 m single mirror telescope
 - Lightweight design 8.8 t
 - 5.6 m focal length, f/D = 5.6 m
 - Bearing, limit switches, slew drive and motors identical to MST structure
- Davies-Cotton optical design:
 - Proven design in IACT
 - Simple optics and lower optical efficiency degradation




The ASTRI camera


The CHEC-M and S cameras




The SST-1M camera

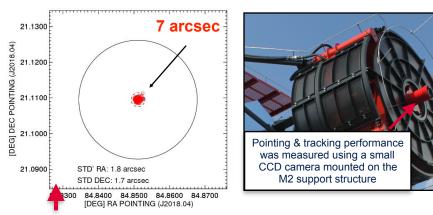
- General
 - Separation of Photo Detector Plane and Digital Readout
 - Separate mechanics and power supplies
 - Analogue signals
 - DC coupling for Night Sky Background monitoring
 - Window with AR coating and low pass filter @ 540 nm
 - Water cooled Heat pipes on Digital board
- Photo detection Plane and front-end
 - 1296 pixel (0.24°) Hexagonal SiPM developed in collaboration with Hamamatsu
 - Hollow light funnel with AR coating optimised for UV
 - Discrete component preamplifier stage
- Sensor bias voltage adjusted according to temperature
- Backend
 - 12 bits FADC @ 250 MS/s
 - Fully digital trigger and readout (High-speed/High-throughput)
 - Deadtime free at 600 Hz

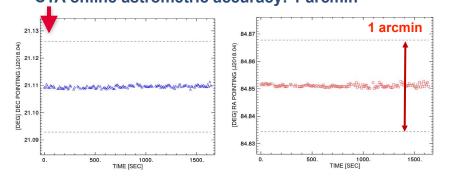
The SST projects performance


The ASTRI project

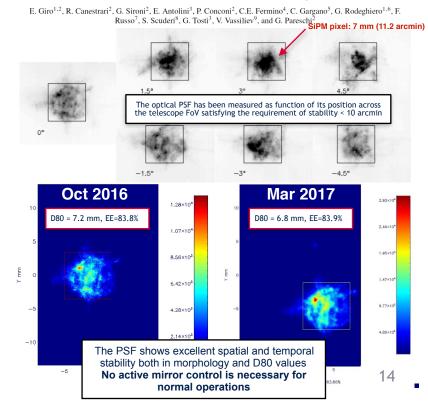
INAF
 Istituto nazionali
 Di astroprisica
 National institutte
 For astrophysics

Universidade de São Paulo




The SST-1M project

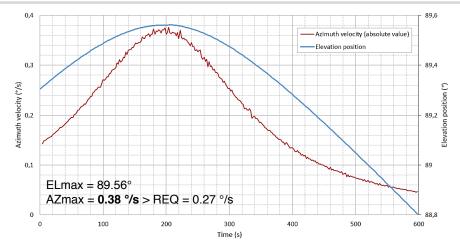
ASTRI structure and optics performance



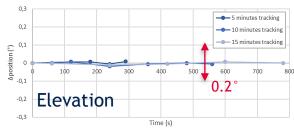
CTA post calibration astrometric accuracy: 7 arcsec
CTA online astrometric accuracy: 1 arcmin

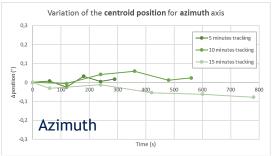
First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

GCT structure and optics performance


Designation	Specification	Test result
Azimuth range	510°	523.8°
Maximum elevation during tracking	89.2°	89.6°*
Max slewing velocity in azimuth	5 °/s	6.1 °/s
Max slewing velocity in elevation	2 °/s	2.2 °/s
Max tracking velocity in azimuth	0.27 °/s	0.38 °/s
Max tracking velocity in elevation	0.0039 °/s	0.0039°/s
Online Astrometric Accuracy	< 60 ''	60 '' **
Tracking precision	< 0.1°	0.083° ***
Emergency stop action	< 1 s	< 1 s
Power consumption (Safe State) ****	2 kW	0.4 kW
Power consumption (Slewing) ****	11 kW	2.5 kW

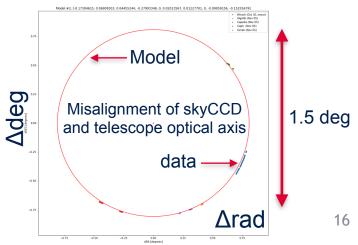
* To be able to track a source at 0.3° /s in azimuth (max speed) at 89.2° in elevation on site (latitude = 24°) the telescope must track at an elevation > 89.5° in Meudon (latitude = $48)^{\circ}$. Plot on the right.

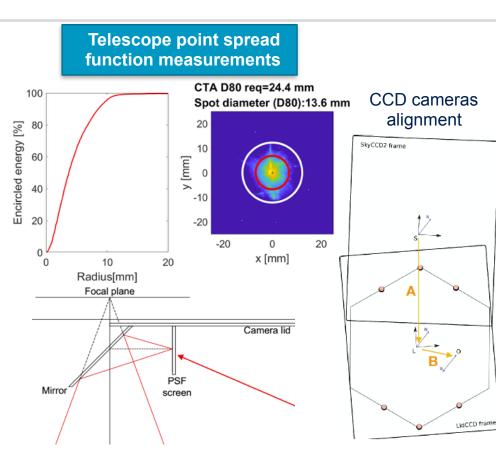

 ** Theoretical pointing precision after applying the pointing model – to be tested


 *** Worst case (in AZ°). Standard deviations are 0.026° in AZ and 0.0078° in EL.

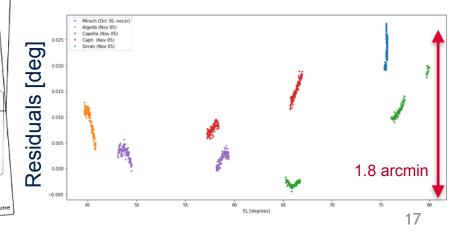
**** With camera and chiller

Variation of the **centroid position** for **elevation** axis

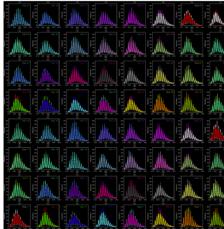

SST-1M structure and optics performance

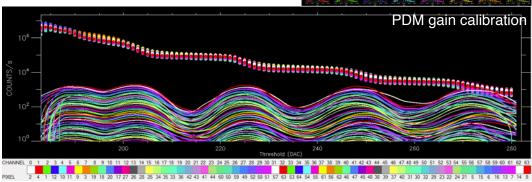

Pointing real-time reconstruction

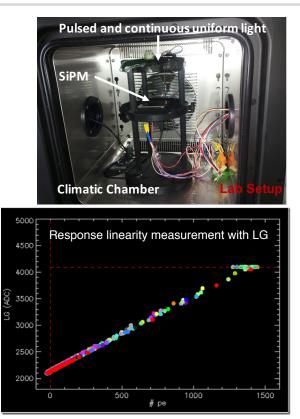
Operation	Output	Estimated accuracy	Budget
astrometry.net	Sky CCD direction	1 arcsec	1 arcsec
3D rotation (fixed)	Lid CCD direction	1 arcsec	1 arcsec
Translation (fixed)	Optical axis direction	4 arcsec	5 arcsec
Bending model (fixed)	Camera direction	2 arcsec	2 arcsec
LED calibration (fixed)	Light guide sky coordinate	7 arcsec	5 arcsec
Budget			7 arcsec


SST-1M structure and optics performance

Pointing real-time reconstruction


Operation	Output	Estimated	Budget
		accuracy	
astrometry.net	Sky CCD direction	1 arcsec	1 arcsec
3D rotation (fixed)	Lid CCD direction	1 arcsec	1 arcsec
Translation (fixed)	Optical axis direction	4 arcsec	5 arcsec
Bending model (fixed)	Camera direction	2 arcsec	2 arcsec
LED calibration (fixed)	Light guide sky coordinate	7 arcsec	5 arcsec
Budget			7 arcsec




ASTRI camera performance

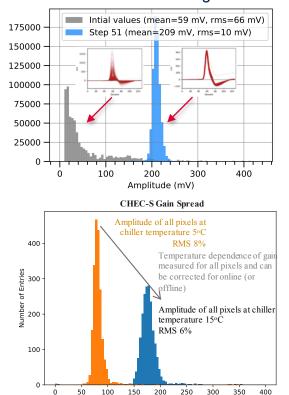
- Trigger alignment within ± 1/20 pe equivalent
- Relative gain calibration
- Photoelectron
 equivalent
- Dynamical range up to 1350 pe

GCT camera performance (CHEC-S)

- SiPMs outperform MAPMTs

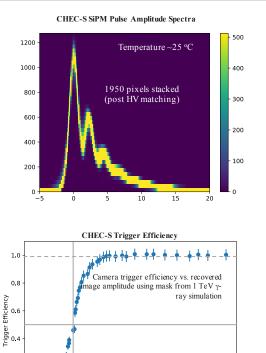
• CHEC-S

- Single p.e. resolvable for all pixels
- Gain spread ~8% post HV matching
 - Limitation: 1 HV per 4 pixels (i.e. can be improved)
 - Temperature dependence understood
- Optical Cross Talk ~40% (!!)
 - >3 yr old SiPMs, Low Cross Talk from Hamamatsu will provide <10%


Target-C ASIC: sampling

- Noise: < 1 ADC count RMS

- Signal saturation above ~500 p.e.
 - Recovery in being optimised


Target-T5TEA ASIC: triggering

 Minimum threshold: 2.5 mV (<1 pe) (expect to operate with around 10 pe threshold)

amp pulse

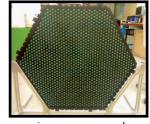
Gain flat-fielding

2000

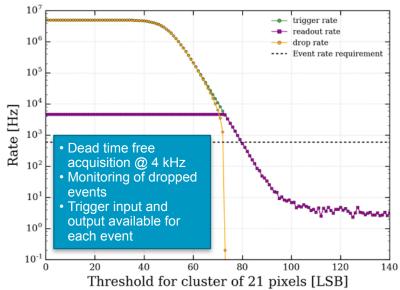
Image Amplitude (a.u.)

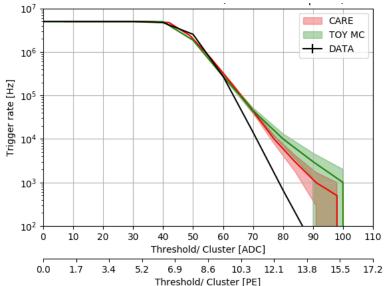
2500 3000

3500


1500

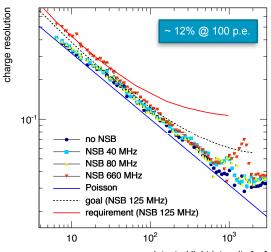
0.2

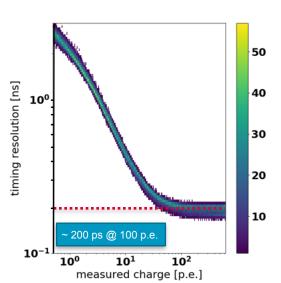

SST-1M camera performance

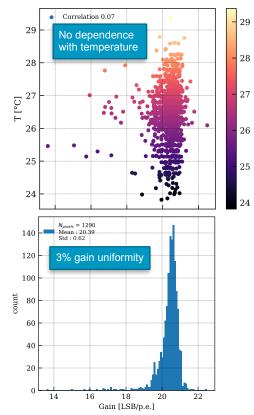


- Performance assessment and camera calibration performed in the lab using dedicated setup emulating the signal and background from real observations
- Every pixel characterised (gain, oct, charge resolution, etc...)
- Trigger performance measured and compare to MC simulations

- 1 AC+1 DC led/pixel Each led state can be
- controlled individually
- AC led level / 3 pixels
- DC led level / 48 pixels
- Offset corrections
 possible
- Fully autonomous



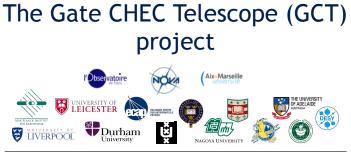



SST-1M camera performance

- Performance assessment and camera calibration performed in the lab using dedicated setup emulating the signal and background from real observations
- Every pixel characterised (gain, oct, charge resolution, etc...)
- Trigger performance measured and compare to MC simulations

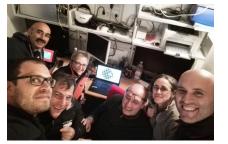
detected light intensity [pe]

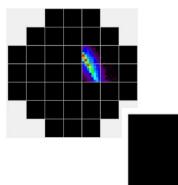
The SST projects first lights


The ASTRI project

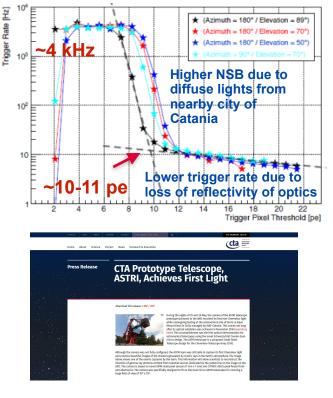
INAF
 ISTITUTO NAZIONALI
 DI ASTROFISICA
 NATIONAL INSTITUTE
 FOR ASTROPHYSICS

Universidade de São Paulo

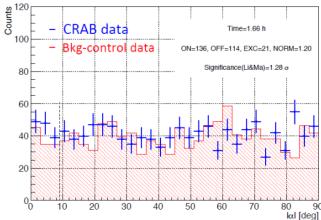



The SST-1M project

ASTRI first light and commissioning

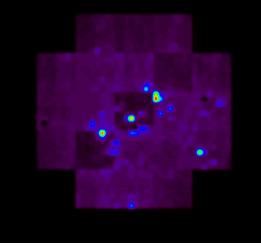


25th of May 2017 First Cherenkov light with the ASTRI camera

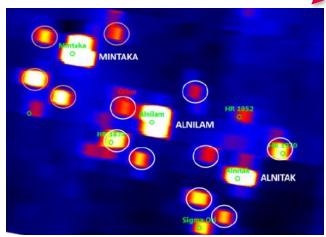


Trigger rate vs Trigger threshold

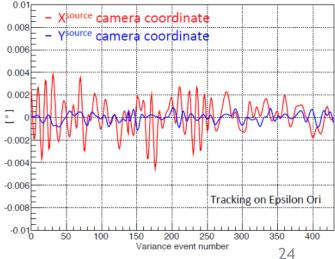
- Crab not detected after 1.66
 hours of observations
- Due to low efficiency of optics 5 sigma detection of Crab in 15 h
- Not yet validated MC simulations available


Detection alpha plot

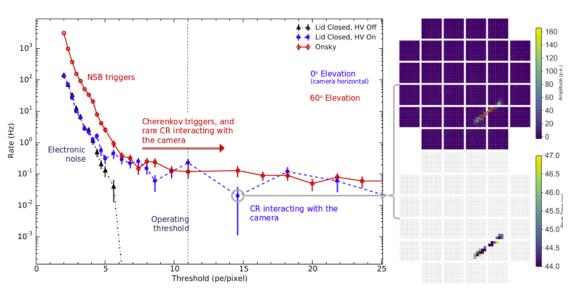
ASTRI first light and commissioning

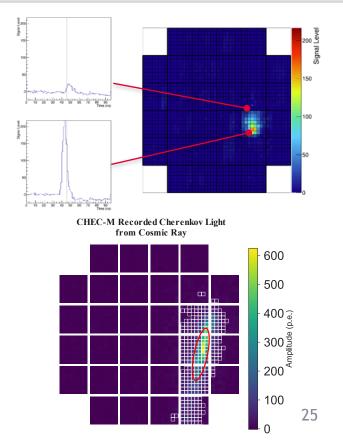


Orion belt image


The electric signal generated by each pixel not triggered is continuously sampled and the variance of the sequence of ADC values is proportional to the photon flux.

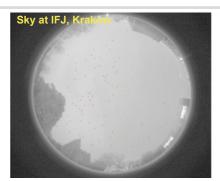
The acquisition of the variance data is done in parallel with the normal Cherenkov data acquisition

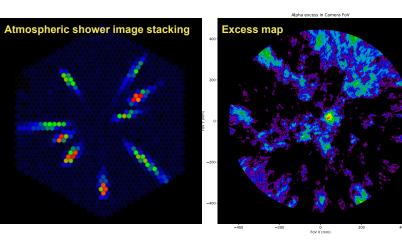

- Measurement of Night Sky Background (NSB)
- Monitoring of the mirrors optical alignment
- Monitoring of telescope pointing accuracy

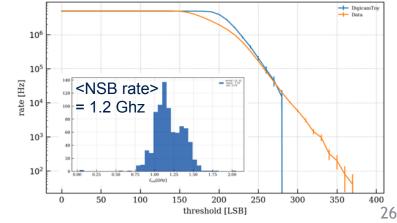

Epsilon Ori's reconstructed position

GCT first light and commissioning (CHEC-M)

- On the 26 November 2015, the CHEC-M camera mounted on the GATE structure recorded the first CTA atmospheric shower event
- Observation conditions in Meudon complicated due to the vicinity of the City of Lights which induce large NSB photon rate




SST-1M first light and commissioning


- First light achieved on 30th of August 2017
- Site not optimal for observation as there is > 1 GHz NSB photons per pixel
- After 1h20 of observation pointing at the CRAB, a 4.2σ excess of atmospheric showers pointing toward its location on the camera was observed
- New observation campaign over the summer 2018

Trigger rate scan

Conclusion

- Three mature designs achieved first light with their respective prototypes
- Full performance estimation to be confronted to CTA requirements: ongoing for the three projects
- Decision taken by the Project Office in May 2018 to adopt only one SST design on-site:
 - Discussions are ongoing between groups to converge to a common design for both structure and camera

