Conveners
Cherenkov detectors in astroparticle physics
- Gregory Hallewell (Centre de Physique des Particules de Marseille (CNRS/IN2P3))
- Werner Hofmann (Max Planck Institute for Nuclear Physics)
Cherenkov detectors in astroparticle physics
- Werner Hofmann (Max Planck Institute for Nuclear Physics)
- Gregory Hallewell (Centre de Physique des Particules de Marseille (CNRS/IN2P3))
Cherenkov detectors in astroparticle physics
- Gregory Hallewell (Centre de Physique des Particules de Marseille (CNRS/IN2P3))
- Werner Hofmann (Max Planck Institute for Nuclear Physics)
The Alpha Magnetic Spectrometer (AMS-02) is a high-energy particle physics magnetic spectrometer installed on the International Space Station since May 2011, and operating continuously since then. Thanks to the large acceptance, long exposure time and particle identification capabilities, AMS-02 measures cosmic rays fluxes in the kinetic energy range between a fraction of GeV/n to multi-TeV/n...
The IceCube Neutrino Observatory is located at the geographic South Pole and consists of over 5000 optical sensors embedded in the Antarctic ice along with 81 cosmic ray detector and veto stations on the surface. IceCube was designed to detect high energy neutrinos from extreme astrophysical environments which are potential cosmic ray acceleration sites, such as active galactic nuclei, gamma...
ANTARES, the largest underwater neutrino telescope in the Northern Hemisphere, has been continuously operating since 2007 in the Mediterranean Sea. The transparency of the water allows for a very good angular resolution in the reconstruction of signatures of interactions from neutrinos of all flavors. This results in unprecedented sensitivity for neutrino source searches in the Southern Sky at...
Abstract. Here we want to report on significantly increased observation limits of imaging air Cherenkov telescopes. Typically these telescopes observe sources until the zenith angle 60°. There exist some observational results when sources were observed till the zenith angle 70°, but these suffer from systematic errors. One of the main problems with large zenith angle observation is related to...
NEVOD - the first in the world Cherenkov water detector (CWD) at the Earth’s surface equipped with a spatial lattice of quasi-spherical measuring modules for the investigations of all basic components of cosmic rays including neutrinos is considered. A large dynamic diapason and close location of quasispherical modules allows use this detector as a Cherenkov water calorimeter for cascade...
One of the most informative methods of cosmic ray studies is the detection of Cherenkov light from extensive air showers (EAS). The primary energy reconstruction is possible by using the Earth’s atmosphere as a huge calorimeter. The EAS Cherenkov light array Tunka-133, with ~ 3 km2 geometrical area, is taking data since 2009. Tunka-133 is located in Tunka Astophysical Center at -~50 km to...
The Cherenkov Telescope Array (CTA) is the next generation of ground-based observatory in the Very High Energy (VHE) gamma-ray domain. The observatory, operating in an open, all-sky mode, will consist of two sites, one in the Northern Hemisphere, at Observatorio Roque de los Muchachos (La Palma, Spain), and another in the Southern Hemisphere. CTA will implement Imaging Atmospheric Cherenkov...
Cherenkov light emission is widely used in numerous astroparticle physics experiments where the success was reached with the detection technique using the imaging atmospheric Cherenkov telescopes. The base of such experiments is that the Cherenkov light emitted from the particles of extensive air shower created by the primary gamma-ray is collected by a mirror reflector and then detected by a...
The Cherenkov Telescope Array project is the next generation of ground-based very high energy gamma-ray instrument. It will serve as an open observatory for a wide astrophysics community and will provide a deep insight into the non-thermal high-energy universe. The array for the southern observatory will consist of about 4 large, 25 medium and 70 small size telescopes.
The small size...
Pierre Auger Observatory is the largest detector ever built for measuring the air-showers produced by ultra high energy cosmic rays. It combines a surface detector of 1600 water Cherenkov detectors spread over 3000 km2 with 27 telescopes. Currently the Pierre Auger collaboration is deploying an upgrade of the surface detector, AugerPrime. The surface detectors are being equipped with...
Super-Kamiokande (SK) is a water Cherenkov detector located 1,000 m underground in Kamioka Observatory, ICRR, University of Tokyo in Japan. It consists from a cylindrical stainless steel tank, 50,000 ton of purified water, and 11,000 of 20-inch PMTs, as shown in Fig. 1. The fiducial volume of the SK detector is 22.5 kton. The experiment was started in April 1996, and currently phase IV (SK-IV)...