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Introduction.

Abstract: The requirement the Space-time supersymmetry in the
String theory is equivalent to the geometrical condition of the
compactification 6 of 10 dimentions on Calabi-Yau(CY) threefold.

The properties of the Effective Lagrangian of the model, which
describes the massless sector, are defined in terms of the so-called
Special Kahler geometry on CY moduli space. I describe a new
approach for computing the Special Kahler geometry based on the
relation of Landau-Ginzburg superpotential of the model with a
Frobenius manifold structure on the CY moduli space. I’l show
how apply this approach for computing the Kahler metric on
moduli space of the Calabi-Yau threefolds of Fer mat type. Also I
show how the Kahler potentials are connected with the partition
functions of the N = (2, 2) Gauged Linear Sigma-Models on
Two-Sphere.



Introduction.
The effective quantum field theory after compactification of the
Superstring theory on a Calabi–Yau (CY) threefold X is defined in
terms of so-called Special Kähler geometry of the CY moduli space.

The corresponding Kähler potential is given by the logarithm of
the holomorphic volume of Calabi-Yau manifold Xφ:

G (φ)ab̄ = ∂a∂b K (φ, φ̄),

e−K(φ) =

∫
Xφ

Ω ∧ Ω,

where Ω is the holomorphic nonvanishing 3− 0 form on Xφ.
This can be rewritten in terms of periods of Ω as:

ωµ(φ) :=

∫
qµ

Ω, qµ ∈ H3(X ,R).

e−K = ωµ(φ)Cµν ων(φ),

where Cµν = [qµ] ∩ [qν ] is an intersection matrix of 3-cycles.



New approach

The computation of all periods is a very complicated problem and
was done explicitly only in few examples.

In the talk I present the method to easily compute the Kähler
metric for the large class of CY defined as hypersurfaces in
weighted projective spaces.

The method uses a correspondence between the Hodge structure
on the middle cohomology of CY manifold and the structure
on the invariant Frobenius ring associated with the CY manifold.

This correspondence is realized by the oscillatory integral
presentation for the periods of the holomorphic Calabi-Yau 3-form.

Clarifying this correspondence we obtain the efficient method for
computing Special geometry on the CY moduli space.



Correspondence of the Hodge structure of H3(X ) and RQ .

Let X be a CY manifold realized as the zero locus of a
quasi-homogeneous polynomial W (x) in weighted P4.
The key point of the approach is the correspondence
between Cohomology H3(X) with Hodge decomposition
H3(X) = H3,0(X)⊕H2,1(X)⊕H1,2(X)⊕H0,3(X), the complex
conjugation and Poincaré pairing the one side and the
invariant ring RQ defined by W(x) with its decomposition
given by degree grading, an antiholomorphic involution M
and the residue pairing ηµλ on RQ on the other side.
Using this correspondence we transform the formula for K (φ) to

e−K(φ) = σµ(φ) ηµλ Mλν σν(φ).

σµ(φ) are periods that are in correspondence with the elements of
the basis in RQ presented by oscillatory integrals,
ηµν is the residue pairing in the ring RQ , Mµν is the
antiholomorphic involution of RQ that is in correspondence with
the complex cojugation ∗ in H3(X ).
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CY as the hypersurface in the weighted projective space
Let now x1, . . . , x5 be homogeneous coordinates in the weighted
projective space P4

(k1,...,k5), and let a Calabi-Yau X be defined as

X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W0(x) = 0}

for a quasi-homogeneous polynomial W0(x)

W0(λki xi ) = λdW0(xi ),

which defines the isolated singularity and

degW0(x) = d =
5∑

i=1

ki .

The last relation ensures that X is a CY manifold.
The moduli space of complex structures is then given by
quasi-homogeneous deformations of this singularity:

W (x , φ) = W0(x) +

h21∑
s=1

φses(x),

where es(x) are monomials of x which have the same degree d .



Hodge structure on middle cohomology

The holomorphic everywhere non-vanishing 3-form Ω is defined as

Ω =
x5dx1 ∧ dx2 ∧ dx3

∂W (x)/∂x4

Periods of Ω are integrals over cycles of H3(X ,R)

ωµ(φ) :=

∫
qµ

Ω, qµ ∈ H3(X ,R).

H3(X ) possesses Hodge structure H3(X ) = ⊕3
k=0H

3−k,k(X ),

dimH3,0(X ) = dimH0,3(X ) = 1, dimH2,1(X ) = dimH1,2(X ) = h2,1.

Poincaré pairing can be written through integrals over cycles qµ as

< χa, χb >=

∫
X
χa ∧ χb =

∫
qµ

χa Cµν

∫
qν

χb,

is invariant with respect to complex conjugation of (p, q)-forms.
Cµν = [qµ] ∩ [qν ] is the intersection matrix of 3-cycles.
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Q-invariant Milnor ring

On the other hand the polynomial W0(x) defines a Milnor ring R0.
We consider its subring RQ invariant with respect to the symmetry
group Q that acts on C5 diagonally and preserves W (x , φ)

RQ =

(
C[x1, · · · , x5]

Jac(W0)

)Q

, Jac(W0) = 〈∂iW0〉5i=1.

RQ becomes Frobenius ring if it is endowed with pairing

η(eα, eβ) = Res
eα(x)eβ(x) d5x∏N

i=1 ∂iW0(x)
.

dimRQ = dimH3(X ) and RQ has the Hodge structure
arising from the grading with degrees 0, d , 2d , 3d

RQ = (RQ)0 ⊕ (RQ)1 ⊕ (RQ)2 ⊕ (RQ)3

. dim(RQ)0 = dim(RQ)3 = 1, dim(RQ)1 = dim(RQ)2 = h2,1
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Q−invariant cohomology H5
D±

(C5)Q

The next step is to introduce two differentials D±

D± = d± dW0∧, (D±)2 = 0

and two groups of Q−invariant cohomology H5
D±

(C5)Q .

These groups inherit the grading from RQ .
Choosing in the ring RQ some basis {eµ(x)} we will take
{eµ(x) d5x} as a basis of H5

D±
(C5)Q .

These cohomology groups are in one-to-one correspondence with
the middle cohomology group ∈ H3(X )(Candelas 1988).

This isomorphism, defined below, maps the components
H3−q,q(X ) to the Hodge decomposition components of H5

±(C5)Q
spanned by eµ(x) d5x with eµ(x) ∈ (RQ)q.

It also maps the Poincare pairing of differential forms to X to the
pairing η(eα, eβ) on the invariant ring RQ .
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Q-invariant relative homology and oscilatory integrals

Having H5
D±

(C5)Q we define two Q-invariant relative homology

groups H
±,Q
5 := H5(C5, ReW0 = L→ ±∞)Q as a quotient of the

relative homology group H5(C5, ReW0 = L→ ±∞).

For this purpose we define the pairing via oscillatory integrals

〈Q±µ , eν(x)d5x〉 :=

∫
Q±
µ

eν(x) e∓W (x)d5x .

We define the relative invariant homology groups H
±,Q
5

as the quotient of H5(C5,W0 = L, ReL→ ±∞)
by its subspace whose elements are orthogonal in repect to this
pairing to all elements of Cohomology group H5

D±
(C5)Q .



H3(X ) versus RQ correspondence

The crucial fact for what follows is that RQ and H3(X ) and all the
additional structures on RQ and H3(X ) are isomorhic to each
other.

We introduce an the isomorphism S

S(Q+
µ ) = qµ, Q+

µ ∈ H
±,Q
5 , qµ ∈ H3(X ,Z)

defined as follows:
Let {qµ} be a basis of H3(X ,Z), then we choose the basis Q±µ of

H
±,Q
5 such that the following integrals over the corresponding

cycles of these two bases are equal∫
qµ

Ωφ =

∫
Q±
µ

e∓W (x ,φ) d5x .



H3(X ) versus H5
D±

(C5)Q correspondence

Having isomorphism between H3(X ) and H
±,Q
5 we define

the isomorphism between the two cohomology groups
H3(X ) and H5

D±
(C5)Q also with help of oscilatory integrals.

Namely, take a basis of cycles qµ ∈ H3(X ) and the corresponding

to it basis of cycles Q±µ ∈ H
±,Q
5 at φ = 0, then the form

χα ∈ H3(X ) corresponds to the form eα(x) d5x ∈ H5
D±

(C5)Q iff∫
qµ

χα =

∫
Q±
µ

eα(x) e∓W0(x) d5x

for all pairs {qµ,Qµ}.
So these two forms are isomorphic if they have the equal
coordinates (i.e. periods) in some isomorphic bases.

This isomorphism preserves Hodge decomposition.
The pairing of the differential forms ∈ H3(X ) and the pairing
of the corresponding elements ∈ RQ coincide.



Coincidence of two pairings and the intersection matrix

We can rewrite the Poincaré pairing of χa, χb ∈ H3(X )

< χa, χb >:=

∫
X
χa ∧ χb

as the bilinear expression of periods

< χa, χb >=

∫
qµ

χa Cµν

∫
qν

χb,

where Cµν = qµ ∩ qν .
On the other hand the residue pairing η(ea, eb) in ring RQ can be
written [Chiodo et al] in terms of periods and Ĉµν = Q+

µ ∩ Q−ν as

η(ea, eb) =

∫
Q+
µ

eae
−W0(x)d5x Ĉµν

∫
Q−
µ

ebe
W0(x)d5x ,

Since Cµν = Ĉµν and
∫
qµ
χa =

∫
Q±
µ
eae
∓W0(x)d5x

we obtain the equality < χa, χb >= η(ea, eb), which expresses
the intersection matrix Cµν in terms the pairing ηab.



Anti-Involution on RQ

The same isomorphism allows to define a the antiholomorphic
involution M on the Q-invariant cohomology H5

D±
(C5)inv that

correspones to the complex conjugation ∗ of the forms ∈ H3(X ).
Let the form φµ ∈ H3(X ) corresponds to {eµ(x)} ∈ RQ and let

∗φµ = Mνµφν .

The RQ inherits this involution, and for the basis {eµ(x)} the
antiholomorphic operation ∗ reads as

∗ eµ(x) = Mνµeν(x).

From this definition and since (∗)2 = I , it follows that M̄M = I .

It is convenient to introduce the basis Γ±µ ∈ H
±,Q
5 dual to the basis

{eµ(x)} such that:

〈Γ±µ , eν(x)d5x〉 =

∫
Γ±
µ

eν(x) e∓W0(x)d5x = δµν .

This definition induces the antiholomorphic operation ∗ on Γ±µ

∗Γ±µ = M̄µνΓ±ν

.



How to compute Mµν

We define T as the transition matrix from cycles Γ±µ to any real
cycles, say, Lefschetz thimbles L±µ = ∗L±µ

L±µ = TµνΓ±ν .

Then we have
L±µ = Tµν (∗Γ±ν ).

Comparing this relation with

∗Γ±µ = M̄µν Γ±ν ,

we obtain for M the useful expression in terms T

M = T−1T̄ .

Obviously M does not depend on the choice of real cycles.
Using the definition 〈Γ±µ , eν(x) d5x〉 = δµν we obtain the useful
for computing Tµν (and Mµν) relation

Tµν =

∫
L±µ

eν(x) e∓W0(x)d5x .
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Derivation the main formula for Kähler potential
We starts from the relation

e−K = ω+
b (φ) Cab ω

−
b (φ).

We express the periods ω±a (φ) given by oscilatory integrals over
cycles L±a in terms of σ±µ (φ) given by oscilatory integrals over Γ±µ

ω±a (φ) =

∫
L±a

e∓W (x ,φ)d5x = Taµσ
±
µ (φ),

σ±µ (φ) =

∫
Γ±
µ

e∓W (x ,φ)d5x .

Also we use the expression for pairing on RQ

ηµν =

∫
L+
a

eµe
−W0(x)d5x Cab

∫
L−b

eνe
W0(x)d5x = TaµCabTbν

Eliminating the matrix Cab from these relations we obtain

e−K(φ) =
∑
µ,ν,λ

σ+
µ (φ) ηµλ Mλν σ

−
ν (φ).



Example. Fermat threefolds

In this case CY manifold X is given by the equation

X = {x1, . . . , x5 ∈ P4
(k1,...,k5)|W (x , φ) = 0}

W (x , φ) =
5∑

i=1

x
d
ki
i +

h21∑
s=1

φses(x), d =
5∑

i=1

ki ,

and d
ki

are positive integers.

The monomials es(x) = e(s1,··· ,s5) :=
∏

i x
si
i correspond to the

deformation of the complex structure of X .
Their weights are equal to

∑5
i=1 ki si = d and each variable xi has

a non-negative integer power si ≤ d
ki
− 2.

The number of such monomials is equal to the Hodge number h21.



Q-invariant Ring

Considering W0(x) as an isolated singularity in C5 we have an
associated Milnor ring

R0 =
C[x1, · · · , x5]

〈∂iW0〉
.

The bases of Milnor rings R0 consist of monomials eµ(x) =
∏

i x
µi
i .

Each non-negative integer µi ≤ d
ki
− 2 and dimR0 =

∏
i (

d
ki
− 1).

Define the Zd− invariant subring RQ ∈ R0 generated by the
monomials es(x) of weight d .
The basis of RQ are elements eµ(x) = e(µ1,··· ,µ5) :=

∏
i x

µi
i whose

weights
∑5

i=1 kiµi are equal 0, d , 2d and 3d .

The basis includes eρ(x) :=
∏

i x
d
ki
−2

i , ρ = ( d
k1
− 2, · · · , d

k5
− 2).

The dimensions of the subspaces of degrees 0, d , 2d and 3d are
1, h21, h21 and 1.
This grading defines a Hodge structure on RQ which is isomorphic
to the Hodge structure on H3(X ).



Q-invariant ring

Fermat polynomials W0 =
∑5

i=1 x
d
ki
i have a nice property that

there is a symmetry group
∏

i Zd/ki that diagonally acts on C5:

α · (x1, · · · , x5) = (αk1
1 x1, · · · , αk5

5 x5), αd
i = 1.

The so–called quantum symmetry Q is the subgroup of
∏

i Zd/ki
defined as follows.
Polynomial W (x) is quasihomogeneous, therefore, in particular,
W (αk1x1, . . . , α

k5x5) = W (x1, . . . , x5), if αd = 1.
This acts trivially on the weighted projective space
as well as on X .
Thus in Fermat case Q ' Zd and the subring RQ is the
Q-invariant part of the Milnor ring.



Phase symmetry, complex conjugation and pairing

The phase symmetry respects the Hodge decomposition.
The monomial basis {eµ(x) = e(µ1,··· ,µ5)(x) =

∏
i x

µi} of RQ is an
eigenbasis of the phase symmetry Z5

d , and each eµ(x) has a unique
weight. We can extend the phase symmetry action to the

parameter space {φs}
h2,1

s=1 such that W (x , φ) is invariant under this
action.
The complex conjugation acts on H3(X ) as Hp,q(X ) = Hq,p(X ).

Due to the isomorphism between RQ and H3(X ) the complex
conjugation M acts also on the elements of the ring RQ as
∗eµ(x) = pµeρ−µ(x), where pµ is a constant.
On the invariant ring RQ there exists the pairing turning it into a
Frobenius algebra:

ηµν = Res
eµ(x) eν(x)∏

i ∂iW0(x)
.

For our monomial basis it is ηµν = δµ,ρ−ν .



Computation of periods σµ(φ)

To explicitly compute σ±µ (φ), first we expand the exponent in the
integral in φ representing W (x , φ) = W0(x) +

∑
s φses(x)

σ±µ (φ) =
∑
m

∫
Γ±
µ

∏
r

er (x)mr e∓W0(x) d5x

(∏
s

(±φs)ms

ms !

)
,

where m := {ms}s , ms ≥ 0 denotes a multi-index of powers of φs
in the expansion above.
σ−µ (φ) = (−1)|µ|σ+

µ (φ), so we focus on σµ(φ) := σ+
µ (φ).

Each differential form
∏

s es(x)ms d5x belongs to H5
D±

(C5)Q .
It follows that it is equal to a linear combination of
eµd

5x ∈ H5
D±

(C5)Q modulo D+-exact terms.
We use this fact for computing oscilatory integrals taking into
account that they vanish for D+-exact terms and∫

Γ+
µ

e−W0(x)P(x) d5x =

∫
Γ+
µ

e−W0(x)(P(x) d5x + D+U)

for any polynomial P(x) and any polynomial 4−form U.



Computation of periods σµ(φ)

Let us denote
∑

s mssi = νi + ni
d
ki
, νi <

d
ki

(for later convenience).
To compute ∫

Γ+
µ

e−W0(x)
∏
i

x
νi+ni

d
ki

i d5x ,

we use the above property and the relation∏
i

x
νi+ni

d
ki

i d5x =

= (−1)

(
n1 − 1 +

k1(ν1 + 1)

d

)
x
ν1+(n1−1) d

k1

∏
i>1

x
νi+ni

d
ki

i d5x+D+U.

where

U =
k1

d
x
ν1+1+(n1−1) d

k1
1

∏
i>1

x
νi+ni

d
ki

i dx2 ∧ · · · ∧ dx5.



Repeating this 4 times we obtain (modulo an exact term)

∏
i

x
νi+ni

d
ki

i d5x = (−1)
∏
i

(
ni − 1 +

ki (νi + 1)

d

)∏
i

x
νi+(ni−1) d

ki
i d5x ,

or∏
i

x
νi+ni

d
ki

i d5x = (−1)
∑

i ni
∏
i

Γ(ki (νi+1)
d + ni )

Γ(ki (νi+1)
d )

∏
i

xνii d5x , νi <
d

ki
.

If any νi = d
ki
− 1, the form is exact, and the integral is zero.

Thus, the rhs is proportional to eν(x)d5x .
Using the definition of Γ+

µ cycles
∫

Γ+
µ
eν(x) e−W0(x) d5x = δµν

we perform integrating over Γ+
µ and obtain that the period

σµ(φ) =
∑
ni≥0

∏
i

Γ
(
ni + ki (µi+1)

d

)
Γ
(
ki (µi+1)

d

) ∑
m∈Σn

∏
s

φms
s

ms !
,

where Σn = {ms |
∑

s mssi = µi + d
ki
ni}.
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Formula for Kähler potential

Pick Lefschetz thimbles L±µ as a basis of cycles with real
coefficients.
Let, as above, T as the transition matrix from cycles Γ±µ to
Lefschetz thimbles L±µ

Γ±µ = (T−1)µν L
±
ν .

To compute the transition matrix Tµν using the relation

Tµν =

∫
L±µ

eν(x) e∓W0(x)d5x .

Then we obtain
M = T−1T̄

which we need to insert to the expression for Kähler potential
together with ηµν = δµ,ρ−ν .



Lefschetz thimbles

Lefschetz thimbles L±µ are products of five one-dimensial cycles Cµi

L+
µ =

5∏
i=1

Cµi ,

where
∑5

i=1 kiµi are equal 0 modulo d

and Cµi = ρ̂µii · Ci with ρi = e
2πiki
d .

This definition of one-dimensial cycle Cµi means that this cycle is
the path in xi -plane obtained by rotating counter clockwise
through angle 2πkiµi

d from the basic path Ci depicted on the figure

2πki
d

Ci

By construction L±µ are steepest descent/acsent cycles for ReW0.



Computing the matrices T and M

We now compute Tαµ explicitly

Tαµ =

∫
L+
α

eµ e
−W0 d5x = ρ(ᾱ,µ̄)A(µ),

where ρ(ᾱ,µ̄) =
∏

i e
2πikiµi

d and Aµ is

Aµ =
∏
i

(
ki
d

)
Γ

(
ki (µi + 1)

d

)
.

We can show that T−1
µ̄ᾱ = B(µ)[ρ̄(µ̄+1,ᾱ) − 1],

where B(µ) =
∏

i
1

Γ
(

ki (µi+1)

d

) .

Therefore

Mµν = (T−1T̄ )µν =
∏
i

γ

(
ki (µi + 1)

d

)
δµ,ρ−ν ,

where γ(x) = Γ(x)
Γ(1−x) .
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Kähler potential for the moduli space of Fermat threefolds.

Substituting the explicit expressions for the periods σµ, the pairing
ηµν , and the anti-involution M in the above expression for the
Kähler potential on the moduli space, we obtain

e−K(φ) =
∑
µ

(−1)deg(µ)/d
∏
i

γ

(
ki (µi + 1)

d

)
|σµ(φ)|2,

where

σµ(φ) =
∑

n1,...,n5≥0

5∏
i=1

Γ(ki (µi+1)
d + ni )

Γ(ki (µi+1)
d )

∑
m∈Σn

∏
s

φms
s

ms !
,

0 ≤ µi ≤ d
ki
− 2,

∑5
i=1 µi = 0, d , 2d , 3d ,

γ(x) =
Γ(x)

Γ(1− x)
, Σn = {ms |

∑
s

mssi = µi +
d

ki
ni}.
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Kähler potential from exact partition function of GLSM.

Non-linear supersymmetric Calabi-Yau sigma-models admit
ultraviolet description as N = (2, 2) gauged linear sigma-models
(Witten). Consider a toric manifold CN/(C∗)k :

(x1, . . . , xN) = (λqi1x1, . . . , λ
qiNxN), i = 1, . . . , k

where λ ∈ C∗ and kij is a k × N matrix. The hypersurface Y is
given by any homogeneous polynomial G (x1, . . . , xN)

G (λqi1x1, . . . , λ
qiNxN) = λdiG (x1, . . . , xN), i = 1, . . . , k .

The CY condition is equivalent to the requirement∑
j

kij + di = 0.

Let GLSM has a gauge group
∏

j U(1) and N + 1 chiral multiplets
(Φ1, . . . ,ΦN ,P) with the U(1)j charges Qij = (q1j , . . . , qNj , dj).
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Kähler potential from exact partition function of GLSM.

Any GLSM can be successfully placed on a sphere while preserving
supersymmetry. The enough amount of supersymmetry allows one
to compute the finite volume partition function of this theory
exactly (Benini et all, Doroud et all)

Z =
∑
ml∈Z

k∏
l=1

e−iθlml

∫
C

k∏
l=1

dτl
(2πi)

e4πrlτl

N+1∏
i=1

Γ
(∑

l Qil(τl − ml
2 )
)

Γ
(
1−

∑
l Qil(τl + ml

2 )
) ,

It was conjectured and verified by a few explicit checks [Jockers et
all] that Z yields the Kähler potential KYK (z, z̄) = − logZ on the
quantum Kähler moduli space for Y with Kähler parameters
associated with complexified FI parameters

zl = e2πrl−iθl , z̄l = e2πrl+iθl .
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Kähler potential from exact partition function of GLSM.

We use mirror symmetry to compare the exact partition function
and KYK (z, z̄). According to the mirror symmetry conjecture there
exists a mirror manifold X , such that

KYK = KXC .

According to Batyrev, every CY manifold realized as a hypersurface
in toric manifold has a mirror belonging to the same class. For the
class of Fermat type hypersurfaces in the weighted projective
spaces P4

k1,k2,k3,k4,k5
dual manifold has a matrix of charges of the

following form

Qil =

{
ki sil , 1 ≤ i ≤ 5,

−dδi−5,l , 6 ≤ i ≤ h + 5.
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Kähler potential from exact partition function of GLSM.

The partition function in this case has the form

Z =
∑
ml∈Z

∫
C

h∏
l=1

dτl
(2πi)

(
z
τl−

ml
2

l z̄
τl+

ml
2

l

)
×

×
5∏

i=1

Γ
(
ki
∑

l sil(τl −
ml
2 )
)

Γ
(
1− ki

∑
l sil(τl + ml

2 )
) h∏

l=1

Γ
(
−d(τl − ml

2 )
)

Γ
(
1 + d(τl + ml

2 )
)

For rl < 0 each contour C can be closed to the right half-plane
peaking up the poles at

d
(
τl −

ml

2

)
= pl ; pl = 0, 1, . . . such that pl + mld < 0.
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Kähler potential from exact partition function of GLSM.

It is convenient to introduce p̄l = pl + mld . Then

Z = π−5
∑
pl ,p̄l

∏
l

(−1)pl

pl !p̄l !
z
− pl

d
l z̄

− p̄l
d

l ×

×
5∏

i=1

Γ

(
ki
d

h∑
l=1

silpl

)
Γ

(
ki
d

h∑
l=1

sil p̄l

)
sin

(
πki
d

h∑
l=1

sil p̄l

)
.

Each term, such that ki
∑h

l=1 sil p̄l = 0 mod d , vanishes. It means
that the sum effectively goes over the set

Sµ = {pl :
h∑

l=1

silpl = µi mod d .}

After simple algebra we find that

Z =
∑
µ

(−1)|µ|
∏
i

γ

(
ki (µi + 1)

d

)
|σµ(z)|2.
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