Study of B_s^0 spectroscopy in the CMS experiment

Sergey Polikarpov1,2

1LPI RAS, 2NRNU MEPhI

Moscow International School of Physics 20-27 February 2019
D0 collaboration, 2016: observation of a new particle X(5568) decaying into $B_s^0\pi^\pm$

Significance 3.9σ

- B_s^0 5582±100 events

- Significance 5.1σ
 - $N_X = 133 \pm 31$
 - $M_X = 5567.8 \pm 2.9$ MeV
 - $\Gamma_X = 21.9 \pm 6.4$ MeV

- Tetraquark candidate consisting of 4 different quarks

- Fraction of B_s^0 mesons coming from X decays
 \[\rho_X \equiv \frac{\sigma(p\bar{p} \to X(5568) + \text{anything}) \times \mathcal{B}(X(5568) \to B_s^0\pi^\pm)}{\sigma(p\bar{p} \to B_s^0 + \text{anything})} \]

- **D0 measured:**
 \[\begin{align*}
 \rho_X &= 8.6\pm2.4\% & \text{for } p_T(B_s^0) > 10 \\
 \rho_X &= 9.1\pm3.1\% & \text{for } 10 < p_T(B_s^0) < 15 \\
 \rho_X &= 8.2\pm3.1\% & \text{for } 15 < p_T(B_s^0) < 30
 \end{align*} \]
LHCb does not see it! (however, in different kinematic region) \cite{PhysRevLett.117.152003(2016)}

\begin{align*}
\rho_X^{\text{LHCb}}(p_T(B_s^0) > 5 \text{ GeV}) & < 0.011 \ (0.012) \\
\rho_X^{\text{LHCb}}(p_T(B_s^0) > 10 \text{ GeV}) & < 0.021 \ (0.024) \ \text{at 90 (95) \% CL} \\
\rho_X^{\text{LHCb}}(p_T(B_s^0) > 15 \text{ GeV}) & < 0.018 \ (0.020)
\end{align*}

\textbf{D0:}
\begin{align*}
\rho_X & = 8.6\pm2.4\% \quad p_T(B_s^0) > 10 \text{ GeV} \\
\rho_X & = 8.2\pm3.1\% \quad p_T(B_s^0) > 15 \text{ GeV}
\end{align*}
Search at CMS: selection and B_s^0 signal

2012 data, 19.7 fb$^{-1}$

B_s^0 meson candidates are reconstructed via the decays $B_s^0 \rightarrow J/\psi \phi$, $\phi \rightarrow K^+K^-$, $J/\psi \rightarrow \mu^+\mu^-$

Require B_s^0 vertex to be significantly displaced from the PV, and its momentum to point from the PV

Fit: Double Gaussian with common mean + exponential

Additional pion is selected from tracks forming the primary vertex
B_s^0 \pi^\pm invariant mass distribution

To improve the invariant mass resolution, we use

\[M^\Delta(B_s^0 \pi^\pm) = M(B_s^0 \pi^\pm) - M(J/\psi K^+ K^-) + m_{B_s^0}^{PDG} \]

No significant peaks, both in the signal and in sidebands B_s^0 regions
By removing the requirement on $M(K^+K^-)$ to be consistent with ϕ mass, we allow the $B^0 \to J/\psi K^+\pi^-$ decay to contribute to the reconstructed sample of $J/\psi K^+K^-$ candidates, into the **signal** and **right sideband** of B_s^0.

In this case, the $B_s^0\pi^\pm$ distribution shows peaks from the $B^{*+}\to B^0\pi^+$ decays, which have exactly the same topology and very similar kinematics.
In order to obtain numerical constraints on $X(5568)$, we fit the $\Bs\pi^\pm$ mass distribution with a sum of a smooth background function and a possible signal component (Relativistic Breit-Wigner function convolved with the resolution from MC).

The signal yield is consistent with zero.

Different cross-checks include changes of the event selection (kinematic and reconstruction quality requirements), fit function, fit region, estimation of background from \Bs^0 sidebands, X signal sidebands, or simulation. **In every case the signal yield is consistent with zero.**
Upper limit on ρ_X

ρ_X is a fraction of B_s^0 mesons produced from $X(5568)$ decays

$$\rho_X \equiv \frac{\sigma(pp \to X(5568) + ...) \times \mathcal{B}(X(5568) \to B_s^0 \pi^\pm)}{\sigma(pp \to B_s^0 + ...)} = \frac{N_{X(5568)}}{N_{B_s^0} \times \epsilon_{rel}}$$

An upper limit is $\rho_X < 1.1\%$ at 95\% C.L.

All the procedure is repeated with $p_T(B_s^0) > 15$ GeV, yielding the limit $\rho_X < 1.0\%$ @ 95\% C.L.

Comparison with the results of other collaborations:

<table>
<thead>
<tr>
<th></th>
<th>D0</th>
<th>LHCb</th>
<th>CMS</th>
<th>CDF</th>
<th>ATLAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T(B_s^0) > 10$ GeV</td>
<td>8.6 ± 2.4</td>
<td>< 2.4</td>
<td>< 1.1</td>
<td>< 6.7</td>
<td>< 1.5</td>
</tr>
<tr>
<td>$p_T(B_s^0) > 15$ GeV</td>
<td>8.2 ± 3.1</td>
<td>< 2.0</td>
<td>< 1.0</td>
<td>—</td>
<td>< 1.6</td>
</tr>
</tbody>
</table>

The obtained limits are the strongest and contradict to the D0 collaboration result, thus not confirming a tetraquark candidate X(5568)
Upper limit as a function of mass and natural width of an exotic state decaying into $B^0_s\pi^\pm$

We need also pion reconstruction efficiency and the invariant mass resolution as functions of mass.

Obtained 95% upper limit on ρ_x as a function of mass and natural width of an exotic state decaying into $B^0_s\pi^\pm$.
P-wave B_s^0 states

Orbital momentum L

$\text{Total angular momentum of light subsystem } j$

$j = L \pm \frac{1}{2}$

$\text{Total angular momentum } J$

$J = j \pm \frac{1}{2}$

$L=1$

$\begin{aligned}
&j = \frac{3}{2} \\
&J = 2 \\
\end{aligned}$

$\begin{aligned}
&j = \frac{1}{2} \\
&J = 1 \\
\end{aligned}$

$\begin{aligned}
&\pm \frac{1}{2} \\
&\pm \frac{1}{2} \\
&\pm \frac{1}{2} \\
\end{aligned}$

$B_{s2}^* (5840)^0$

$B_{s1} (5830)^0$

B_s^*

B_{s0}^*

Unobserved

Predicted masses are usually below $B^+ K^-$ threshold

The decay $B_{s1} \rightarrow B^+ K^-$ corresponds to (in J^P) $1^+ \rightarrow 0^- 0^-$ and is forbidden

The decay $B_{s1} \rightarrow B^{*+} K^-$ corresponds to (in J^P) $1^+ \rightarrow 1^- 0^-$ and $\frac{3}{2}^- \rightarrow \frac{1}{2}^+ 0^-$ in j^p

In HQET j^p is also conserved \Rightarrow it cannot proceed in S-wave; but can proceed in D-wave.

Similarly, $B_{s2}^* \rightarrow B^+ K^-$ and $B_{s2}^* \rightarrow B^{*+} K^-$ decays are expected to proceed in D-wave.
Previous results on P-wave B^0_s states

Observed and studied only by CDF, D0, and LHCb, only in B^+K^- channel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$N(B_{s2}^* \to B^+K^-)$</td>
<td>95 ± 23</td>
<td>125 ± 25</td>
<td>3140 ± 100</td>
<td>1110 ± 60</td>
</tr>
<tr>
<td>$N(B_{s2}^* \to B^{**}K^-)$</td>
<td>$-$</td>
<td>$-$</td>
<td>307 ± 46</td>
<td>?? ~ 100</td>
</tr>
<tr>
<td>$N(B_{s1} \to B^{**}K^-)$</td>
<td>39 ± 9</td>
<td>25 ± 10</td>
<td>750 ± 36</td>
<td>280 ± 40</td>
</tr>
<tr>
<td>$M(B_{s2}^*), \text{ MeV}$</td>
<td>5839.6 ± 0.7</td>
<td>5839.6 ± 1.3</td>
<td>5839.99 ± 0.21</td>
<td>5839.7 ± 0.2</td>
</tr>
<tr>
<td>$M(B_{s1}), \text{ MeV}$</td>
<td>5829.4 ± 0.7</td>
<td>$-$</td>
<td>5828.40 ± 0.41</td>
<td>5828.3 ± 0.5</td>
</tr>
<tr>
<td>$M(B_{s2}^*) - M(B^+) - M(K^-), \text{ MeV}$</td>
<td>66.96 ± 0.41</td>
<td>66.7 ± 1.1</td>
<td>67.06 ± 0.12</td>
<td>66.73 ± 0.19</td>
</tr>
<tr>
<td>$M(B_{s1}) - M(B^{**}) - M(K^-), \text{ MeV}$</td>
<td>10.73 ± 0.25</td>
<td>11.5 ± 1.4</td>
<td>10.46 ± 0.06</td>
<td>10.35 ± 0.19</td>
</tr>
<tr>
<td>$\Gamma(B_{s2}^*), \text{ MeV}$</td>
<td>$-$</td>
<td>$-$</td>
<td>1.56 ± 0.49</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>$\Gamma(B_{s1}), \text{ MeV}$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>0.5 ± 0.4</td>
</tr>
</tbody>
</table>

Phys. Rev. Lett. 110, 151803 (2013)

Phys. Rev. D 90, 012013 (2014)
Study P-wave B^0_s states at CMS

- Study the B^+K^- final state: measure masses, mass differences, natural width (using $B^+\rightarrow J/\psi K^+$)

- Search for the decays into $B^0K^0_s$ (using $B^0\rightarrow J/\psi K^+\pi^-$)
B$^+$ invariant mass distribution

Modelled with triple Gaussian function with common mean for signal, exponential for bkg additional small contribution to account for Cabibbo suppressed $B^+\rightarrow J/\psi\pi^+$ decay

The B^+ invariant mass resolution is consistent between data and MC
Effective resolution* is about 24 MeV

$$\sigma_{eff} = \sqrt{f_1\sigma_1^2 + f_2\sigma_2^2 + (1 - f_1 - f_2)\sigma_3^2}$$

A small difference of $\sim 3\%$ is used in the estimation of the systematic uncertainties

Now combine B^+ with a track from the same PV
B^+h^- invariant mass distributions

To describe the signal B^+K^- invariant mass distribution, we need to take into account the reflections from excited B^0 decays into B^{(*)+}\pi^- (see backup for details on the procedure)
Shapes of reflections from $B^*^0 \rightarrow B^{(*)+} \pi^-$ decays in B^+K^- invariant mass distribution

The shapes obtained using simulated events are approximated with a product of one-sided double-Gaussian function and sum of two Gaussian functions.
B⁺K⁻ invariant mass distribution

Now we fit B⁺K⁻ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions

+ (x-x₀)ᵃ • Pol₆(x) for background,
 x₀ is threshold value

+ contributions from excited B⁰
 (shapes fixed to MC, yields fixed to the fit results
to the B⁺π⁻ invariant mass distribution)

<table>
<thead>
<tr>
<th>N(B_{s2}^* → BK)</th>
<th>N(B_{s2}^* → B*K)</th>
<th>N(B_{s1} → B*K)</th>
<th>Γ(B_{s2}^*), MeV</th>
<th>Γ(B_{s1}), MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5424 ± 269</td>
<td>455 ± 119</td>
<td>1329 ± 83</td>
<td>1.52 ± 0.34</td>
<td>0.10 ± 0.15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M(B_{s2}^*) − M(B) − M(K), MeV</th>
<th>M(B_{s1}) − M(B⁺) − M(K), MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>66.926 ± 0.093</td>
<td>10.495 ± 0.089</td>
</tr>
</tbody>
</table>
The resolution parameters and the shape of $K \leftrightarrow \pi$ swapped component are fixed from simulation (see backup)

Fraction of swapped component with respect to signal = $(18.9 \pm 3.0)\%$

in the B^0 signal region of $\pm 2\sigma$
$B^0K^0_S$ invariant mass distribution

Fit:
- 3 D-wave RBW functions convolved with resolutions
- $(x-x_0)^a \cdot \text{Pol}_1(x)$ for bkg, x_0 is threshold value
- 3 contributions from $K \leftrightarrow \pi$ swap (yields fixed relative to signal: $S^*0.189$)

First observation!
- 6.3σ $B_{s2}^* \rightarrow B^0K^0_S$

First evidence!
- 3.9σ

<table>
<thead>
<tr>
<th>$N(B_{s2}^* \rightarrow BK)$</th>
<th>$N(B_{s2}^* \rightarrow B^*K)$</th>
<th>$N(B_{s1} \rightarrow B^*K)$</th>
<th>$\Gamma(B_{s2}^*), \text{ MeV}$</th>
<th>$\Gamma(B_{s1}), \text{ MeV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 ± 22</td>
<td>12 ± 11</td>
<td>34.5 ± 8.3</td>
<td>2.1 ± 1.3</td>
<td>0.4 ± 0.4</td>
</tr>
</tbody>
</table>

$\frac{M(B_{s2}^*) - M(B) - M(K), \text{ MeV}}{62.42 ± 0.48}$

$\frac{M(B_{s1}) - M(B^*) - M(K), \text{ MeV}}{5.65 ± 0.23}$

Measuring BF ratios

\[R^0_{2\pm} = \frac{\mathcal{B}(B^*_s \rightarrow B^0 K^0_s)}{\mathcal{B}(B^*_s \rightarrow B^+ K^-)} = \frac{N(B^*_s \rightarrow B^0 K^0_s)}{N(B^*_s \rightarrow B^+ K^-)} \times \frac{\mathcal{E}(B^*_s \rightarrow B^+ K^-)}{\mathcal{E}(B^*_s \rightarrow B^0 K^0_s)} \times \frac{\mathcal{B}(B^+ \rightarrow J/\psi K^+)}{\mathcal{B}(B^0 \rightarrow J/\psi K^{*0}) \mathcal{B}(K^{*0} \rightarrow K^+ \pi^-) \mathcal{B}(K^0_s \rightarrow \pi^+ \pi^-)} \]

Ratio of the signal yields in data

Ratio of total efficiencies from MC

Known branching fractions from PDG

\[\mathcal{B}(B^+ \rightarrow J/\psi K^+) = (1.026 \pm 0.031) \times 10^{-3}, \mathcal{B}(K^0_s \rightarrow \pi^+ \pi^-) = (0.6920 \pm 0.0005) \]

\[\mathcal{B}(B^0 \rightarrow J/\psi K^{*0}) = (1.28 \pm 0.05) \times 10^{-3}, \mathcal{B}(K^{*0} \rightarrow K^+ \pi^-) = (0.99754 \pm 0.00021) \]

Formulae and efficiencies ratios for all 6 measured ratios are in backup
Sources of systematic uncertainty

Systematic uncertainties in the branching fraction ratios, mass differences and Γ, are related to:

- **Choice of the fit model**
 separate uncertainties related to the fits of $B^+\pi$, B^+K^- and $B^0K_0^-$ invariant mass distributions;
 largest deviation of the results under changes of the fit model is used as systematic uncertainty

- **Track reconstruction efficiency (3.9% per extra track)**
 7.8% since 2 more tracks to reconstruct in $B^0K_0^-$ final state

- **Mass resolution**
 largest change of the resulting ratios under simultaneous variations of resolution by ±3%

- **Fraction of K↔π swapped component**
 largest change of the resulting ratios under variations of this fraction by ±3%

- **Uncertainty on $m_{B^*-m_B}$**
 largest change of the resulting ratios under variations of $m_{B^*-m_B}$ by ± PDG uncertainty

- **Non-K* contribution in $B^0\rightarrow J/\psi K^+\pi^-$ decay**
 estimated by fitting background-subtracted $K^+\pi^-$ invariant mass distribution

- **Possible detector misalignment**
 estimated using additional MC samples with distorted detector geometries

- **Finite size of the simulation samples**
 uncertainties in efficiencies = $N_{reconstructed}/N_{generated}$
Results

Uncertainties here are, respectively, statistical, systematic, related to PDG uncertainties

\[
R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})} = 0.432 \pm 0.077 \pm 0.075 \pm 0.021,
\]

\[
R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \rightarrow B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})} = 0.49 \pm 0.12 \pm 0.07 \pm 0.02,
\]

\[
R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})} = 0.081 \pm 0.021 \pm 0.015,
\]

\[
R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})} = 0.093 \pm 0.086 \pm 0.014.
\]

Theory: 0.42-0.46

LHCb 0.093±0.013±0.012

CDF 0.10±0.03±0.02

\[
R_{\sigma}^{\pm} = \frac{\sigma(pp \rightarrow B_{s1}X) \mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})}{\sigma(pp \rightarrow B_{s2}^{*}X) \mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})} = 0.233 \pm 0.019 \pm 0.018,
\]

\[
R_{\sigma}^{0} = \frac{\sigma(pp \rightarrow B_{s1}X) \mathcal{B}(B_{s1} \rightarrow B^{*0}K_{S}^{0})}{\sigma(pp \rightarrow B_{s2}^{*}X) \mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})} = 0.266 \pm 0.079 \pm 0.063.
\]

Results are in agreement with existing measurements of LHCb and CDF

LHCb 2013: [doi:10.1103/PhysRevLett.110.151803](#)

CDF 2014: [doi:10.1103/PhysRevD.90.012013](#)
Results

\[\Delta M_{B_{s2}^*}^{\pm} = M(B_{s2}^*) - M_{B^+}^{PDG} - M_{K^-}^{PDG} = 66.87 \pm 0.09 \pm 0.07 \text{ MeV}, \]

\[\Delta M_{B_{s2}^*}^{0} = M(B_{s2}^*) - M_{B^0}^{PDG} - M_{K^0_S}^{PDG} = 62.37 \pm 0.48 \pm 0.07 \text{ MeV}, \]

\[\Delta M_{B_{s1}^*}^{\pm} = M(B_{s1}^*) - M_{B^{*+}}^{PDG} - M_{K^-}^{PDG} = 10.45 \pm 0.09 \pm 0.06 \text{ MeV}, \]

\[\Delta M_{B_{s1}^*}^{0} = M(B_{s1}^*) - M_{B^{*0}}^{PDG} - M_{K^0_S}^{PDG} = 5.61 \pm 0.23 \pm 0.06 \text{ MeV}. \]

\[\Gamma_{B_{s2}^*} = 1.52 \pm 0.34 \pm 0.30 \text{ MeV} \]

Comparison to previous measurements

<table>
<thead>
<tr>
<th></th>
<th>(M(B_{s2}^*)-M(B^+)-M(K^-))</th>
<th>(M(B_{s1}^)-M(B^{+})-M(K^-))</th>
<th>(\Gamma(B_{s2}^*))</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb</td>
<td>67.06\pm0.12</td>
<td>10.46\pm0.06</td>
<td>1.56\pm0.49</td>
</tr>
<tr>
<td>CDF</td>
<td>66.73\pm0.19</td>
<td>10.35\pm0.19</td>
<td>1.4\pm0.44</td>
</tr>
<tr>
<td>CMS</td>
<td>66.87\pm0.12</td>
<td>10.45\pm0.11</td>
<td>1.52\pm0.43</td>
</tr>
</tbody>
</table>

Consistent with existing measurements of LHCb and CDF

Results

We also measure the mass differences between neutral and charged $B(*)$ mesons:

\[M_{B^0} - M_{B^+} = 0.57 \pm 0.49 \pm 0.10 \pm 0.02 \text{ MeV} \]

\[M_{B^{*0}} - M_{B^{*+}} = 0.91 \pm 0.24 \pm 0.09 \pm 0.02 \text{ MeV} \]

The first mass difference is known with much better precision: 0.31 ± 0.06 MeV [PDG] while there are no measurements for the second one.

We present a new method to measure these mass differences!
It may become very precise with more data
No X(5568) signal is found
upper limit is set on the fraction of B_s^0 mesons produced from X(5568) decays:

$$\rho_X < 1.1 \% \text{ at } 95\% \text{ C.L}$$

This is the most stringent limit to date, and it contradicts to the D0 result
Upper limit is also set as a function of mass and width of exotic state

First observation (6.3σ) of the $B_{s2}^* \rightarrow B^0 K_S^0$ decay

First evidence (3.9σ) for the $B_{s1} \rightarrow B^{*0} K_S^0$ decay

Measure 4 BF ratios

$$\frac{\mathcal{B}(B_{s2}^* \rightarrow B^0 K_S^0)}{\mathcal{B}(B_{s2}^* \rightarrow B^{+} K^-)}, \frac{\mathcal{B}(B_{s1} \rightarrow B^{*0} K_S^0)}{\mathcal{B}(B_{s1} \rightarrow B^{*+} K^-)}, \frac{\mathcal{B}(B_{s2}^* \rightarrow B^{*+} K^-)}{\mathcal{B}(B_{s2}^* \rightarrow B^{+} K^-)}, \frac{\mathcal{B}(B_{s2}^* \rightarrow B^{*0} K_S^0)}{\mathcal{B}(B_{s2}^* \rightarrow B^{0} K_S^0)}$$

Measure 2 BF x σ ratios

$$\frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*+} K^-)}{\sigma(pp \rightarrow B_{s2}^* \ldots) \times \mathcal{B}(B_{s2}^* \rightarrow B^{+} K^-)}, \frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*0} K_S^0)}{\sigma(pp \rightarrow B_{s2}^* \ldots) \times \mathcal{B}(B_{s2}^* \rightarrow B^{0} K_S^0)}$$

Measure 6 mass differences, 2 masses and the natural width

- $M(B_{s2}^*) - M(B^0) - M(K^-)$
- $M(B_{s1}) - M(B^{*+}) - M(K^-)$
- $M(B_{s2}^*) - M(B^0) - M(K_S^0)$ (new)
- $M(B_{s1}) - M(B^{*0}) - M(K_S^0)$ (new)
- $M(B_{s2}^*)$
- $\Gamma(B_{s2}^*)$
- $M(B^0) - M(B^+)$
- $M(B^{*0}) - M(B^{*+})$ (new)
- $\Gamma(B^*)$
Thank you !
Overview

B\(^+\) is reconstructed in J/\(\psi\)K\(^+\) channel
B\(^0\) is reconstructed in J/\(\psi\)K\(^+\)\(\pi^-\) channel

"Reflections":

From B\(^{**}\)\(\rightarrow\)B\(^{(\ast)}\)\(\pi^-\) in B\(^+\)K\(^-\) channel, yields fixed from the fit to B\(^+\)\(\pi^-\) invariant mass;

From K\(\leftrightarrow\pi\) swap in B\(^0\)K\(_S^0\) channel, yields fixed relative to the signal yields

We also measure masses, mass differences and \(\Gamma(B_{s2}^\ast)\) in these decays

<table>
<thead>
<tr>
<th>Final state</th>
<th>(N(B_{s2}^\ast \rightarrow BK))</th>
<th>(N(B_{s2}^\ast \rightarrow B^\ast K))</th>
<th>(N(B_{s1} \rightarrow B^\ast K))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(^{+})K(^-)</td>
<td>5424 ± 269</td>
<td>455 ± 119</td>
<td>1329 ± 83</td>
</tr>
<tr>
<td>B(^0)K(_S^0)</td>
<td>128 ± 22</td>
<td>12 ± 11</td>
<td>34.5 ± 8.3</td>
</tr>
</tbody>
</table>

CMS-BPH-16-003, arXiv:1809.03578
\[R^0_2 = \frac{\mathcal{B}(B^*_s \rightarrow B^0 K^0_s)}{\mathcal{B}(B^*_s \rightarrow B^- K^-)} = 0.432 \pm 0.077 \text{ (stat)} \pm 0.075 \text{ (syst)} \pm 0.021 \text{ (PDG)} \]
\[R^0_1 = \frac{\mathcal{B}(B_{s1} \rightarrow B^{*0} K^0_s)}{\mathcal{B}(B_{s1} \rightarrow B^{*+} K^-)} = 0.492 \pm 0.122 \text{ (stat)} \pm 0.068 \text{ (syst)} \pm 0.024 \text{ (PDG)} \]
\[R^{\pm}_{2*} = \frac{\mathcal{B}(B^*_s \rightarrow B^{*+} K^-)}{\mathcal{B}(B^*_s \rightarrow B^+ K^-)} = 0.081 \pm 0.021 \text{ (stat)} \pm 0.015 \text{ (syst)}, \]
\[R^0_{2*} = \frac{\mathcal{B}(B^*_s \rightarrow B^{*0} K^0_s)}{\mathcal{B}(B^*_s \rightarrow B^0 K^0_s)} = 0.093 \pm 0.086 \text{ (stat)} \pm 0.014 \text{ (syst)}, \]
\[R^\pm_0 = \frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*+} K^-)}{\sigma(pp \rightarrow B^{*+} \ldots) \times \mathcal{B}(B^*_s \rightarrow B^+ K^-)} = 0.233 \pm 0.019 \text{ (stat)} \pm 0.018 \text{ (syst)} \]
\[R^0_0 = \frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*0} K^0_s)}{\sigma(pp \rightarrow B^{*+} \ldots) \times \mathcal{B}(B^*_s \rightarrow B^0 K^0_s)} = 0.266 \pm 0.079 \text{ (stat)} \pm 0.063 \text{ (syst)} \]

\[\Delta M^\pm_{B^*_s} = M(B^*_s) - M(B^+) - M(K^-) = 66.870 \pm 0.093 \text{ (stat)} \pm 0.073 \text{ (syst) MeV}, \]
\[\Delta M^0_{B^*_s} = M(B^*_s) - M(B^0) - M(K^0_s) = 62.37 \pm 0.48 \text{ (stat) \pm 0.07 (syst) MeV}, \]
\[\Delta M^{\pm}_{B_{s1}} = M(B_{s1}) - M(B^{*+}) - M(K^-) = 10.452 \pm 0.089 \text{ (stat)} \pm 0.063 \text{ (syst) MeV}, \]
\[\Delta M^0_{B_{s1}} = M(B_{s1}) - M(B^{*0}) - M(K^0_s) = 5.61 \pm 0.23 \text{ (stat) \pm 0.06 (syst) MeV}, \]

\[M(B^*_s) = 5839.86 \pm 0.09 \pm 0.07 \pm 0.15 \text{ MeV} \]
\[M(B_{s1}) = 5828.78 \pm 0.09 \pm 0.06 \pm 0.28 \text{ MeV} \]

\[m_{B^0} - m_{B^+} = 0.57 \pm 0.49 \text{ (stat) \pm 0.10 \text{ (syst) \pm 0.02 (PDG) MeV}} \]
\[m_{B^{*0}} - m_{B^{*+}} = 0.91 \pm 0.24 \text{ (stat) \pm 0.09 \text{ (syst) \pm 0.02 (PDG) MeV}} \]

\[\Gamma(B^*_s) = 1.52 \pm 0.34 \text{ (stat) \pm 0.30 \text{ (syst) MeV}} \]
BACKUP
Data and event selection

2012 dataset (19.6 fb\(^{-1}\)), trigger optimized to select \(B \rightarrow J/\psi...\) decays, where \(J/\psi \rightarrow \mu^+\mu^-\)

\(B^+ (B^0)\) candidates obtained combining \(J/\psi\) with \(1(2)\) tracks: \(B^+ \rightarrow J/\psi K^+\) and \(B^0 \rightarrow J/\psi K^+\pi^-\)

B meson vertex required to be displaced from the PV in the transverse (\(xy\)) plane

B meson momentum required to point to the PV in the \(xy\) plane

\(B^+K^-\) channel:
Prompt \(K^-\) selected to come from the same pp interaction as the \(B^+\)

\(B^0K_S^0\) channel:
\(M(K^+\pi^-)\) in ±90 MeV from \(K^*(892)\) mass,
\(M(K^+K^-) > 1.035\) GeV to cut out \(B_S^0 \rightarrow J/\psi\phi\)
K/\(\pi\) mass assignment: chose the candidate closer to \(K^*(892)\) mass

\(K_S^0\) is build from displaced 2-prong vertices
\(K_S^0\) momentum required to point to PV in the \(xy\) plane

more details: see backup
To obtain yields of these reflections, we fit $B^+\pi^-$ invariant mass distribution:

3 D-wave RBW functions convolved with resolutions (from MC)

$+ (x-x_0)^a \cdot Pol_m(x)$ for background, x_0 is threshold value, $Pol_m(x)$ is polynomial of degree m

$+ (\text{small}) \text{ contributions from } B_{s1,2}^{(*)}$

In the baseline fit, masses and natural widths of excited B^0 states are fixed to PDG

The fit returns yields of about 8500, 10500 and 12000 events for the $B_2^*\rightarrow B^+\pi^-$, $B_2^*\rightarrow B^{*-}\pi^-$, and $B_1^*\rightarrow B^+\pi^-$ decays, respectively
Data and event selection

2012 dataset (19.6 fb\(^{-1}\)), trigger optimized to select \(B \rightarrow J/\psi\ldots\) decays
Muons matched to trigger; \(p_T(\mu^\pm) > 3.5\) GeV/c, \(|\eta(\mu^\pm)| < 2.2\)
Standard CMS “high purity” tracks, \(p_T > 1\) GeV

\[
\begin{align*}
P_{\text{vtx}}(B) & > 1\% \\
\text{PV is chosen as the one with best pointing angle} \\
L_{xy}/\sigma_{L_{xy}}(B) & > 5.0 \\
\cos \alpha_{xy} & > 0.99 \text{ (B momentum points to PV in xy plane)} \\
\text{B mass in } \sim \pm 2 \sigma_{\text{eff}} \text{ from PDG}
\end{align*}
\]

\(B^+K^-\) channel: \(K^-\) is chosen from PV track collection

\(B^0K^0_S\) channel:
\[M(K^+\pi^-) \text{ in } \pm 90\text{ MeV from } K^*(892) \text{ mass,}
\]
\[M(K^+,K^-) > 1.035\text{ GeV to cut out } B^0_s \rightarrow J/\psi \phi
\]
\(K/\pi\) mass assignment: chose the candidate closer to \(K^*(892)\) mass

\(K^0_S\) is build from displaced 2-prong vertices
\[\cos \alpha_{xy} > 0.999 \text{ (} K^0_S \text{ momentum points to PV in xy plane)}
\]
B^+K^- signal extraction logic

- Fit to B^*[0] → B^+π^- MC samples to obtain signal resolutions
- Fit to B^*[0] → B^+π^- MC samples (if reconstructed as B^+π^-)
- Fit to B_{s1,2}^*[0] → B^+K^- MC samples to obtain reflection shapes
- Fit to B_{s1,2}^*[0] → B^+K^- MC samples (if reconstructed as B^+K^-)
- Fit to B^+K^- distribution in data, with signal resolutions fixed to MC
 • reflections from B^*[0] shapes and yields fixed
 • Signal resolutions fixed to MC
- Yields of B^*[0] → B^+π^- contributions
- Fit to B^+π^- invariant mass distribution in data, with signal resolutions from MC and fixed shapes of reflections from B_{s1,2}^*[0] → B^+K^-
- Signal yields, mass differences, Γ
The shapes of reflections from $B_{s1,2}^0$ decays in $B^+\pi^-$ invariant mass

Product of a Gaussian function and 1-sided Gaussian function

$$F(x; ...) = G_L(x; m_L, \sigma_L) \ast \exp \left(-\frac{(x - m_c)^2}{2\sigma^2} \right) \ast \left((1 - f) G_R(x; m_R, \sigma_R1) + f G_R(x; m_R, \sigma_R2) \right)$$

where

$$G_L(x; m, \sigma) = \begin{cases}
\exp\left(-\frac{1}{2} \left(\frac{x-m}{\sigma}\right)^2\right) & \text{if } x \leq m \\
1 & \text{if } x \geq m
\end{cases}$$

and

$$G_R(x; m, \sigma) = \begin{cases}
1 & \text{if } x \leq m \\
\exp\left(-\frac{1}{2} \left(\frac{x-m}{\sigma}\right)^2\right) & \text{if } x \geq m
\end{cases}$$

CMS Simulation Preliminary

Data
Fit

Candidates / 3 MeV

5.45 5.5 5.55 5.6 5.65 5.7

5.48 5.5 5.55 5.6 5.65 5.7

5.5 5.52 5.54 5.56 5.58 5.6

5.45 5.5 5.55 5.6 5.65 5.7

5.48 5.5 5.55 5.6 5.65 5.7

5.5 5.52 5.54 5.56 5.58 5.6

5.45 5.5 5.55 5.6 5.65 5.7

5.48 5.5 5.55 5.6 5.65 5.7

5.5 5.52 5.54 5.56 5.58 5.6
The shapes of reflections from B^{0*} decays in B^+K^- invariant mass

Product of a double-Gaussian function and double 1-sided Gaussian function

$$F(x; \sigma_{01}, \sigma_{02}, m_0, \sigma_1, m_1, \sigma_2, m_2, f, \phi) = G(x; \ldots) \star \left(\exp\left(-\frac{(x-m_1)^2}{2\sigma_1^2}\right) + f \star \exp\left(-\frac{(x-m_2)^2}{2\sigma_2^2}\right) \right)$$

where $G(x; \sigma_{01}, \sigma_{02}, \phi, m_0) = \begin{cases}
(1 - \phi) \exp\left(-\frac{(x-m_0)^2}{2\sigma_{01}^2}\right) + \phi \exp\left(-\frac{(x-m_0)^2}{2\sigma_{02}^2}\right) & \text{if } x < m_0 \\
1 & \text{if } x > m_0
\end{cases}$
B⁰ invariant mass distribution (MC)

B⁰ is reconstructed in the decay to J/ψK⁺π⁻, where kaon and pion can be misidentified (swapped) in the reconstruction. The selection requirements are

\[M(K^+\pi^-) \text{ in } \pm 90 \text{ MeV from } K^*(892) \text{ mass,} \]
\[M(K^+,K^-) > 1.035 \text{ GeV to cut out } B_s^0 \rightarrow J/\psi \phi, \text{ as in P5’ analysis} \]

K/π mass assignment: as in P5’, chose the candidate closer to K*(892) mass

We use MC to obtain the signal resolution and shape of K↔π swapped component:

![Graphs showing the B⁰ invariant mass distribution with fitted curves for Triple Gaussian and Bifurcated Gaussian.](attachment:image.png)
The resolution parameters and the shape of $K\leftrightarrow\pi$ swapped component are fixed from simulation (see backup).

The B^0 signal region [5245, 5313] MeV includes ~220000 signal candidates and ~41000 $K\leftrightarrow\pi$ swap candidates \Rightarrow “fraction of swapped component w.r.t. signal” = $(18.9\pm0.3)\%$

Vary the signal resolution by $+\text{ and } -3\%$ (see $B^+\text{ fit}$) \Rightarrow variation of this fraction is $(18.9\pm3.0)\%$ (uncertainty will be considered as systematics source)
Systematic uncertainties in the branching fraction ratios

\[
R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})}
\]

\[
R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \rightarrow B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>(R_{2}^{0\pm})</th>
<th>(R_{1}^{0\pm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track reconstruction efficiency</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>(m_{B^{+}\pi^{-}}) distribution model</td>
<td>2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>(m_{B^{+}K^{-}}) distribution model</td>
<td>2.4</td>
<td>4.6</td>
</tr>
<tr>
<td>(m_{B^{0}K_{S}^{0}}) distribution model</td>
<td>14</td>
<td>8.1</td>
</tr>
<tr>
<td>Mass resolution</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Fraction of KPS</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Non-K*0 contribution</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Finite size of simulated samples</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>14</td>
</tr>
</tbody>
</table>

Systematic uncertainty in %

\[
R_{2*}^{\pm} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})}
\]

\[
R_{2*}^{0} = \frac{\mathcal{B}(B_{s2}^{*} \rightarrow B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})}
\]

\[
R_{\sigma}^{\pm} = \frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*+}K^{-})}{\sigma(pp \rightarrow B_{s2}^{*} \ldots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{+}K^{-})}
\]

\[
R_{\sigma}^{0} = \frac{\sigma(pp \rightarrow B_{s1} \ldots) \times \mathcal{B}(B_{s1} \rightarrow B^{*0}K_{S}^{0})}{\sigma(pp \rightarrow B_{s2}^{*} \ldots) \times \mathcal{B}(B_{s2}^{*} \rightarrow B^{0}K_{S}^{0})}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>(R_{2*}^{\pm})</th>
<th>(R_{2*}^{0})</th>
<th>(R_{\sigma}^{\pm})</th>
<th>(R_{\sigma}^{0})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{B^{+}\pi^{-}}) distribution model</td>
<td>2.9</td>
<td>—</td>
<td>2.7</td>
<td>—</td>
</tr>
<tr>
<td>(m_{B^{+}K^{-}}) distribution model</td>
<td>17</td>
<td>—</td>
<td>7.1</td>
<td>—</td>
</tr>
<tr>
<td>(m_{B^{0}K_{S}^{0}}) distribution model</td>
<td>—</td>
<td>13</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Mass resolution</td>
<td>1.2</td>
<td>3.0</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Uncertainties in (M_{B^{*}}^{PDG} - M_{B}^{PDG})</td>
<td>7.7</td>
<td>4.8</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Finite size of simulated samples</td>
<td>1.1</td>
<td>1.3</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>15</td>
<td>7.8</td>
<td>24</td>
</tr>
</tbody>
</table>

CMS-BPH-16-003, arXiv:1809.03578 37
Systematic uncertainties

Four mass differences obtained from the fits

\[
\Delta M_{B_{s2}^\pm} = M(B_{s2}^\pm) - M_{B^\pm}^{PDG} - M_{K^-}^{PDG}, \quad \Delta M_{B_{s1}^\pm} = M(B_{s1}^\pm) - M_{B^{*+}}^{PDG} - M_{K^-}^{PDG}
\]

\[
\Delta M_{B_{s2}^0} = M(B_{s2}^0) - M_{B^0}^{PDG} - M_{K_S^0}^{PDG}, \quad \Delta M_{B_{s1}^0} = M(B_{s1}^0) - M_{B^{*0}}^{PDG} - M_{K_S^0}^{PDG}
\]

allow to measure the mass differences between neutral and charged B(*) mesons:

\[
M_{B^0} - M_{B^+} = \Delta M_{B_{s2}^\pm} - \Delta M_{B_{s2}^*} + M_{K^-}^{PDG} - M_{K_S^0}^{PDG}
\]

\[
M_{B^{*0}} - M_{B^{*+}} = \Delta M_{B_{s1}^\pm} - \Delta M_{B_{s1}^*} + M_{K^-}^{PDG} - M_{K_S^0}^{PDG}
\]

Additional systematic uncertainties are related to

> **Shift from reconstruction:** values obtained from the reconstructed MC differ a bit from those in the generation configuration. Our measurements are corrected by these shifts, and value of each shift is used as systematic uncertainty.

> **Detector misalignment:** 18 additional MC samples for each measurement are produced with differently distorted detector geometry, and maximum deviation from the case of no misalignment is taken as systematic uncertainty.

<table>
<thead>
<tr>
<th>Source</th>
<th>(\Delta M_{B_{s2}^\pm})</th>
<th>(\Delta M_{B_{s1}^\pm})</th>
<th>(\Delta M_{B_{s2}^*})</th>
<th>(\Delta M_{B_{s1}^*})</th>
<th>(M_{B^0} - M_{B^+})</th>
<th>(M_{B^{0}} - M_{B^{+}})</th>
<th>(\Gamma_{B_{s2}^*})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{B^+\pi^-}) distribution model</td>
<td>0.024</td>
<td>0.008</td>
<td>—</td>
<td>—</td>
<td>0.024</td>
<td>0.008</td>
<td>0.11</td>
</tr>
<tr>
<td>(m_{B^+K^-}) distribution model</td>
<td>0.011</td>
<td>0.043</td>
<td>—</td>
<td>—</td>
<td>0.011</td>
<td>0.043</td>
<td>0.11</td>
</tr>
<tr>
<td>(m_{B^0K_S^0}) distribution model</td>
<td>—</td>
<td>—</td>
<td>0.039</td>
<td>0.038</td>
<td>0.039</td>
<td>0.038</td>
<td>—</td>
</tr>
<tr>
<td>Uncertainties in (M_{B^{*+}}^{PDG} - M_{B}^{PDG})</td>
<td>0.012</td>
<td>0.003</td>
<td>0.003</td>
<td>0.0001</td>
<td>0.012</td>
<td>0.003</td>
<td>0.03</td>
</tr>
<tr>
<td>Shift from reconstruction</td>
<td>0.056</td>
<td>0.044</td>
<td>0.050</td>
<td>0.042</td>
<td>0.075</td>
<td>0.061</td>
<td>—</td>
</tr>
<tr>
<td>Detector misalignment</td>
<td>0.036</td>
<td>0.005</td>
<td>0.031</td>
<td>0.006</td>
<td>0.038</td>
<td>0.008</td>
<td>0.15</td>
</tr>
<tr>
<td>Mass resolution</td>
<td>0.007</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.009</td>
<td>0.007</td>
<td>0.20</td>
</tr>
<tr>
<td>Total</td>
<td>0.073</td>
<td>0.063</td>
<td>0.071</td>
<td>0.057</td>
<td>0.098</td>
<td>0.085</td>
<td>0.30</td>
</tr>
</tbody>
</table>
B^0K^0 signal significance

Estimated using likelihood ratio of fits with and without signal component

\[P = \text{TMath.Prob}(\log L_S - \log L_0, 1) \]

\[\text{Signif} = \sqrt{2} \cdot \text{Tmath.ErfcInverse}(P) \]

where

- \(L_0 \) corresponds to fit with signal
- \(L_S \) corresponds to fit without signal

For these fits, systematic uncertainties of resolution and fraction of swapped component are included as Gaussian constraints in likelihood; Mass and \(\Gamma \) uncertainties from PDG are as well Gaussian-constrained.

Obtained significance is:

- **6.3\(\sigma \)** for the \(B^*_{s2} \rightarrow B^0K^0 \) decay
- **3.9\(\sigma \)** for the \(B^*_{s1} \rightarrow B^{*0}K^0 \) decay

They vary in [6.3, 7.0]\(\sigma \) and [3.6, 3.9]\(\sigma \) with variations of fit range and bkg model.
Measured BF ratios

\[R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{0}K_{S}^{0})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{+}K^{-})}{\epsilon(B_{s2}^{*} \to B^{0}K_{S}^{0})} \times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{S}^{0} \to \pi^{+}\pi^{-})} \]

\[R_{1}^{0\pm} = \frac{\mathcal{B}(B_{s1} \to B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s1} \to B^{*+}K^{-})} = \frac{N(B_{s1} \to B^{*0}K_{S}^{0})}{N(B_{s1} \to B^{*+}K^{-})} \times \frac{\epsilon(B_{s1} \to B^{*+}K^{-})}{\epsilon(B_{s1} \to B^{*0}K_{S}^{0})} \times \frac{\mathcal{B}(B^{+} \to J/\psi K^{+})}{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{+}\pi^{-})\mathcal{B}(K_{S}^{0} \to \pi^{+}\pi^{-})} \]

\[R_{2}^{*} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})}{\mathcal{B}(B_{s2}^{*} \to B^{+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{*+}K^{-})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{+}K^{-})}{\epsilon(B_{s2}^{*} \to B^{*+}K^{-})} \]

\[R_{2}^{0\pm} = \frac{\mathcal{B}(B_{s2}^{*} \to B^{*0}K_{S}^{0})}{\mathcal{B}(B_{s2}^{*} \to B^{*+}K^{-})} = \frac{N(B_{s2}^{*} \to B^{*0}K_{S}^{0})}{N(B_{s2}^{*} \to B^{*+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{*0}K_{S}^{0})}{\epsilon(B_{s2}^{*} \to B^{*+}K^{-})} \]

\[R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1} \ldots)}{\sigma(pp \to B_{s2} \ldots)} \times \mathcal{B}(B_{s1} \to B^{*+}K^{-}) = \frac{N(B_{s1} \to B^{*+}K^{-})}{N(B_{s2}^{*} \to B^{+}K^{-})} \times \frac{\epsilon(B_{s2}^{*} \to B^{*+}K^{-})}{\epsilon(B_{s1} \to B^{*+}K^{-})} \]

\[R_{\sigma}^{0} = \frac{\sigma(pp \to B_{s1} \ldots)}{\sigma(pp \to B_{s2} \ldots)} \times \mathcal{B}(B_{s1} \to B^{*0}K_{S}^{0}) = \frac{N(B_{s1} \to B^{*0}K_{S}^{0})}{N(B_{s2}^{*} \to B^{*0}K_{S}^{0})} \times \frac{\epsilon(B_{s2}^{*} \to B^{*0}K_{S}^{0})}{\epsilon(B_{s1} \to B^{*0}K_{S}^{0})} \]
Relative efficiencies

\[
\frac{\epsilon(B_{s2}^* \rightarrow B^+K^-)}{\epsilon(B_{s2} \rightarrow B^0K_S^0)} = 15.77 \pm 0.18, \quad \frac{\epsilon(B_{s1} \rightarrow B^{*-}K^-)}{\epsilon(B_{s1} \rightarrow B^{*0}K_S^0)} = 16.33 \pm 0.20,
\]

\[
\frac{\epsilon(B_{s2}^* \rightarrow B^+K^-)}{\epsilon(B_{s2} \rightarrow B^*+K^-)} = 0.961 \pm 0.010, \quad \frac{\epsilon(B_{s2}^* \rightarrow B^0K_S^0)}{\epsilon(B_{s2} \rightarrow B^*0K_S^0)} = 0.970 \pm 0.012,
\]

\[
\frac{\epsilon(B_{s2}^* \rightarrow B^+K^-)}{\epsilon(B_{s1} \rightarrow B^*+K^-)} = 0.953 \pm 0.010, \quad \frac{\epsilon(B_{s2}^* \rightarrow B^0K_S^0)}{\epsilon(B_{s1} \rightarrow B^{*0}K_S^0)} = 0.987 \pm 0.012,
\]

Their uncertainties are used as systematic uncertainties.
CMS experiment

CMS DETECTOR
Total weight: 14,000 tonnes
Overall diameter: 15.0 m
Overall length: 28.7 m
Magnetic field: 3.8 T

STEEL RETURN YOKE
12,500 tonnes

SILICON TRACKERS
Pixel (100x150 μm) ~16 m² ~66M channels
Microstrips (80x180 μm) ~200 m² ~9.6M channels

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

PRESHOWER
Silicon strips ~16 m² ~137,000 channels

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL)
~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels