Veto signal consideration for the muon induced single neutron background in the DANSS experiment

Anna Ershova

MIPT

Scientific Advisor: A. Kobyakin
Plan

Description of the experiment

VetoHitChecker
 Lead
 Copper
 Steel

Results
Description of the experiment
Description of the experiment

\[\bar{\nu}_e + p = n + e^+ \]

- **Prompt signal:** the positron deposits its energy within a short range of few cm and then annihilates emitting two 511 keV photons at 180°.
- **Delayed signal:** the neutron is captured by ^{157}Gd or ^{155}Gd with a very high cross-section after moderation in 1-3 cm of the plastic scintillator.
- The time difference between the prompt and the delayed signal is in the tens of microseconds range.
- For reactor neutrino energy of the positron produced is to a good precision equal to that of the original neutrino energy with the subtraction of the reaction threshold energy of 1.804 MeV.
Description of the experiment

5 strips = 20 cm

10 layers
20 cm

X1
X2
X3
X4
X5

Y1
Y2
Y3
Y4
Y5
Description of the experiment

Copper frames
(= internal part of the shield)

Sensitive volume:
polystyrene-based scintillator strips

The detector basement
(cooled copper plate)

Coolant passage

MPPC

Test fiber

PMT

MPPC front-end electronics

CHB$_{int}$, Pb, CHB$_{ext}$

μ_1, μ_2

Muon Veto sandwich

0 100 mm
Background mechanism

- Low energy neutrons are captured by borated polyethylene contained in passive shielding.
- Muons generate fast neutrons in materials of passive shielding (copper, lead).
- Fast neutron gives recoil proton during thermalisation (prompt signal-like event) and is captured by ^{157}Gd or ^{155}Gd (delayed signal-like event).

Need to estimate neutron background from cosmic muons.
Muon spectrum

Energy spectrum is equivalent to the cosmic muon spectrum taking into account 50 m.w.e. suppression

\[\theta = \arccos(-\text{DirZ}) \cdot \frac{180^\circ}{\pi} \]
simulated 15 days of real time to analyze the neutron spectrum from muons in lead, copper and steel.

obtained distribution of energy, points of birth and direction of neutron motion.

taking into account the obtained distributions, sources of single neutrons were created in Geant4.

statistics for each source was collected.

the analysis of the number of signal-like events was conducted.

A signal event is an event in which capture by 157Gd or 155Gd happened and the primary PMT signal is more than 1 MeV.
Material, all neutrons

Material \{ ParticleName=="neutron" && ParticleEnergy>1.5 \}
Material, single neutrons
Time estimation

- $6.6 \cdot 10^8$ muons equals to 10 days of real time
- $9.88 \cdot 10^8$ muons was really generated
- was simulated $\frac{9.88 \cdot 10^8 \cdot 10}{6.6 \cdot 10^8} \approx 15$ days
- $1.4 \cdot 10^6 \pm 1200$ single neutrons in lead
 - 800000 ± 900 – in copper
 - 330000 ± 550 – in steel
 - 160000 ± 400 – in borated polyethylene
- 65 neutrons per minute in lead
 - 35 – in copper
 - 17 – in steel
 - 7 – in borated polyethylene
Energy distribution

Lead; one of the side planes

Fit: $e^{p_0 + p_1 \cdot x} + e^{p_2 + p_3 \cdot x}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2</td>
<td>331.7 / 22</td>
</tr>
<tr>
<td>p_0</td>
<td>8.655 ± 0.014</td>
</tr>
<tr>
<td>p_1</td>
<td>-0.06364 ± 0.00069</td>
</tr>
<tr>
<td>p_2</td>
<td>14.02 ± 0.01</td>
</tr>
<tr>
<td>p_3</td>
<td>-0.8932 ± 0.0030</td>
</tr>
</tbody>
</table>

Energy, MeV

- dE/dN

- 10^3
Theta distribution

Lead; one of the side planes

Fit: $p_4 \cdot x^4 + p_3 \cdot x^3 + p_2 \cdot x^2 + p_1 \cdot x + p_0$

$$\theta = \arccos(-\text{DirZ}) \cdot \frac{180^\circ}{\pi}$$

\[
\begin{array}{ll}
\chi^2 / \text{ndf} & 119.1 / 93 \\
p_0 & 51.27 \pm 12.61 \\
p_1 & 64.08 \pm 1.37 \\
p_2 & 0.3886 \pm 0.0343 \\
p_3 & -0.008291 \pm 0.000295 \\
p_4 & 2.309e-05 \pm 8.144e-07 \\
\end{array}
\]
Examples of point of birth distribution

Lead; one of the side and top planes

Left fit: $p_0 + \exp(p_1 \cdot x)$

Right fit: $p_0 + p_1 \cdot x$
Energy distribution

Copper; one of the side planes

Fit: $e^{p_0 + p_1 \cdot x} + e^{p_2 + p_3 \cdot x}$

$\chi^2 / \text{ndf} = 513.4 / 28$
$p_0 = 7.682 \pm 0.022$
$p_1 = -0.06672 \pm 0.00094$
$p_2 = 12.8 \pm 0.0$
$p_3 = -0.7311 \pm 0.0035$
Theta distribution

Copper; one of the side planes

Fit: \(p_4 \cdot x^4 + p_3 \cdot x^3 + p_2 \cdot x^2 + p_1 \cdot x + p_0 \)

\[
\theta = \arccos(-\text{DirZ}) \cdot \frac{180^\circ}{\pi}
\]
Comparison of the results

<table>
<thead>
<tr>
<th>Material</th>
<th>With VetoHitChecker</th>
<th>Without VetoHitChecker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>1.9% can give a signal, 0.19 signal-like events/min</td>
<td>3.2% can give a signal, 0.32 signal-like events/min</td>
</tr>
<tr>
<td>Copper</td>
<td>3.8% can give a signal, 0.25 signal-like events/min</td>
<td>23.3% can give a signal, 0.78 signal-like events/min</td>
</tr>
<tr>
<td>Steel</td>
<td>0.35% can give a signal, 0.06 signal-like events/min</td>
<td>—</td>
</tr>
</tbody>
</table>
Thank you for attention
Back slides
Literature

Alekseev I. et al. (2018)
DANSS Neutrino Spectrometer: Detector Calibration, Response Stability, and Light Yield

Alekseev I. et al. (2017)
Detector of the reactor AntiNeutrino based on Solid-state plastic Scintillator (DANSS). Status and first results

Alekseev I. et al. (2016)
DANSS: Detector of the reactor AntiNeutrino based on Solid Scintillator
Electromagnetic processes
EmStandardPhysics_option4 — a set of models of electromagnetic processes selected from standard and low-energy packages, adapted to low-energy physics (about MeV).

Hadron processes
QGSP_BERT_HP — gives good data for particles with energies greater than 1 GeV (necessary when simulating cosmic muons) and gives greater accuracy for events with energy less than 20 MeV which are important for this experiment

Other processes
The decay processes of unstable particles and the process of capture of negative muons are included