

MISP 2020

Federica Pasquali

INTRODUCTION

• Higgs boson discovered in 2012

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

https://arxiv.org/abs/1207.7214

INTRODUCTION

- Higgs boson discovered in 2012
- CP nature of the Higgs boson not yet well measured

•
$$\mathscr{L}_{Higgs} = |D_{\mu}\Phi|^2 - \mu^2 |\Phi|^2 -$$

Different options available

- CP even (SM) $CP | \Phi > = | \Phi >$
- CP odd $CP | \Phi > = - | \Phi >$
- **CP** mixed

 $CP | \Phi > \neq \pm | \Phi >$

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

https://arxiv.org/abs/1207.7214

THE AIM: SEARCH FOR CP VIOLATION

- Probe the CP nature of the Higgs boson in a model-independent way
- A non CP even Higgs boson hints at BSM physics
- In Run1 (0 jet channel) (combination of WW^* , ZZ^* , $\gamma\gamma$)
 - Excluded the pure CP odd scenario
 - Up to 30% "CP odd" possible in mixed scenario (95%CL)

- In Run2 many CP analyses in different channels
 - $H \rightarrow ZZ^* \rightarrow 4l$, published with 36/fb

$H \rightarrow ZZ^* \rightarrow 4l - MAIN PICTURE$

- Why?
 - clear signature and high signal-to-background ratio
- Analysis strategy
 - events are classified according their different production modes (ggF, VBF, VH)
 - assuming that the BSM changes in the Higgs sector do not to affect the SM background processes
- Signal samples
 - the signal is modelled by using POWHEG Monte Carlo at NLO with QCD corrections up to NLO and QCD soft-gluon re-summations up NNL logarithm applied morphing technique used to interpolate the BSM signal scenarios
- Main Background
 - continuum $ZZ^{(*)}$ production
 - Use of BDT to better separate signal and background
- A maximum likelihood (ML) fit is used for the statistical interpretation of the results

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

QQQ

$H \rightarrow ZZ^* \rightarrow 4l - MAIN PICTURE$

- **Event Selection**
 - 4 leptons selected
 - 4μ , $2e2\mu$, $2\mu 2e$, 4e
 - The three highest-pT leptons required to have $p_T > 20$ GeV, $p_T > 15$ GeV, $p_T > 10$ GeV, respectively
 - The leading lepton pair required to have $50 < m_{1,2} < 106$ GeV
 - The sub-leading lepton pair $m_{min} < m_{3,4} < 115$ GeV
 - Where m_{min} goes from 12 to 50 GeV depending on the four-lepton invariant mass m_{4l}
 - The two-lepton pairs must have an angular separation of $\Delta R = \sqrt{(\Delta y)^2 + (\Delta \phi)^2} > 0.1(0.2)$

for same-flavour (different-flavour) lepton pairs

Each electron (muon) must have a transverse impact parameter significance $|d_0|/\sigma(d_0) < 5(3)$

$H \rightarrow ZZ^* \rightarrow 4l - BDT$

- Differences between H $\rightarrow ZZ^* \rightarrow 4l$ and the ZZ* background incorporated in a BDT discriminant
 - Training done with fully simulated
 - signal events with $m_H = 125 \text{ GeV}$
 - $qq \rightarrow ZZ^*$ continuos background distribution
 - Only events with $118 < m_{4l} < 129 \text{ GeV}$
 - Variables used
 - p_T^{4l} : transverse momentum of the four-lepton system
 - η_T^{4l} : pseudorapidity of the four-lepton system
 - D_{ZZ^*} defined as $\ln(|\mathcal{M}_{sig}|^2/|\mathcal{M}_{ZZ}|^2)$ with \mathcal{M}_x the matrix element for the considered process

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

• asymmetric around 125 GeV to include the residual effects of bremsstrahlung

$H \rightarrow ZZ^* \rightarrow 4l - MORPHING$

• The morphing functionality allows to interpolate/extrapolate a given physical (possibly multi-dimensional) observable as a function of SM-like and BSM Higgs boson couplings to known particles.

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

		SM	Mix	BSM	
g^2_{SM}	(1	0	0)	
м g_{BSM}		-1	1	-1	
g^2_{BSM}		0	0	1 /	

http://cdsweb.cern.ch/record/2066980

N of base sample	ggF
$C_{\alpha} \kappa_{Hvv}$	3
$S_{\alpha}K_{AVV}$	3
$s_{lpha}\kappa_{Agg}$	3
$C_{\alpha} \kappa_{\text{Hvv}}$ vs. $S_{\alpha} \kappa_{\text{Avv}}$	6
$c_{\alpha}\kappa_{Hvv}$ vs. $s_{\alpha}\kappa_{Agg}$	9

$H \rightarrow ZZ^* \rightarrow 4l - HOW$

 Measuring the CP state of the top-Yukawa coupling by using an EFT (effettive field theory) approach

Higgs Caraterization model https://arxiv.org/abs/1306.6464

- Λ set to 1 TeV, no new BSM particles below the energy scale Λ
- χ_0 bosonic state of spin 0
- α the mixing angle between the 0^+ and 0^- CP states CP odd $\alpha = 1$
- CP mixed $0 < \alpha < 1$ $\kappa_{HVV}, \kappa_{AVV}$ and κ_{Agg} are considered as possible BSM admixtures to the corresponding SM interactions
- $\kappa_{HWW} = \kappa_{HZZ} \equiv \kappa_{HVV}$ and $\kappa_{AWW} = \kappa_{AZZ} \equiv \kappa_{AVV}$
- κ_{SM} and κ_{Hqq} are fixed to the SM value of 1 if not stated otherwise

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

$\mathcal{L}_0^V = \left\{ \kappa_{\rm SM} \left| \frac{1}{2} g_{HZZ} Z_\mu Z^\mu + g_{HWW} W^+_\mu W^{-\mu} \right| \right\}$ $-\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G^a_{\mu\nu} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu} \right]$ $-\frac{1}{4}\frac{1}{\Lambda}\left[\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \tan\alpha\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu}\right]$ $-\frac{1}{2}\frac{1}{\Lambda}\left[\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu} + \tan\alpha\kappa_{AWW}W_{\mu\nu}^{+}\tilde{W}^{-\mu\nu}\right]\bigg\}\chi_{0}$

CP even $\alpha = 0$

$H \rightarrow ZZ^* \rightarrow 4l - HOW$

 Measuring the CP state of the top-Yukawa coupling by using an EFT (effettive field theory) approach

Higgs Caraterization model https://arxiv.org/abs/1306.6464

- Λ set to 1 TeV, no new BSM particles below the energy scale Λ
- χ_0 bosonic state of spin 0
- α the mixing angle between the 0^+ and 0^- CP states CP odd $\alpha = \pi$
- CP mixed $0 < \alpha < \pi$ $\kappa_{HVV}, \kappa_{AVV}$ and κ_{Agg} are considered as possible BSM admixtures to the corresponding SM interactions
- $\kappa_{HWW} = \kappa_{HZZ} \equiv \kappa_{HVV}$ and $\kappa_{AWW} = \kappa_{AZZ} \equiv \kappa_{AVV}$
- κ_{SM} and κ_{Hqq} are fixed to the SM value of 1 if not stated otherwise

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

CP even $\alpha = 0$

$H \rightarrow ZZ^* \rightarrow 4l - HOW$

 Measuring the CP state of the top-Yukawa coupling by using an EFT (effettive field theory) approach

Higgs Caraterization model https://arxiv.org/abs/1306.6464

- Λ set to 1 TeV, no new BSM particles below the energy scale Λ
- χ_0 bosonic state of spin 0
- α the mixing angle between the 0^+ and 0^- CP state
- κ_{HVV} , κ_{AVV} and κ_{Agg} are considered as possible BSM admixtures to the corresponding SM interaction
- $\kappa_{HWW} = \kappa_{HZZ} \equiv \kappa_{HVV}$ and $\kappa_{AWW} = \kappa_{AZZ} \equiv \kappa_{AVV}$
- κ_{SM} and κ_{Hgg} are fixed to the SM value of 1 if not stated otherwise

 $H \rightarrow ZZ^* \rightarrow 4l, \kappa_{Agg} FIT$

$$\mathcal{L}_0^V = -\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu}^{c} \right]$$

- Probing BSM couplings in the ggH vertex
 - "Rate only" fit : obtained with an event yield-only analysis The total width of the Higgs boson is modified to take into account the changes in the Branching Ratio due to the **BSM** contributions

$G^{a}_{\mu\nu}G^{a,\mu\nu}$ + tan $\alpha\kappa_{Agg}g_{Agg}G^{a}_{\mu\nu}\tilde{G}^{a,\mu\nu}$

 $H \rightarrow ZZ^* \rightarrow 4l, \kappa_{Agg} FIT$

$$\mathcal{L}_0^V = -\frac{1}{4} \left[\kappa_{Hgg} g_{Hgg} G_{\mu}^d \right]$$

- - "Rate only" fit : obtained with an event yield-only analysis The total width of the Higgs boson is modified to take into account the changes in the Branching Ratio due to the **BSM** contributions

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fit
K _{BSM}	configuration	conf. inter.	conf. inter.	$\hat{\kappa}_{\mathrm{BSM}}$	$\hat{\kappa}_{\rm SM}$
KAgg	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-0.47, 0.47]	[-0.68, 0.68]	±0.43	-

$\begin{bmatrix} a \\ \mu\nu \end{bmatrix} G^{a,\mu\nu} + \tan \alpha \kappa_{Agg} g_{Agg} G^{a}_{\mu\nu} \tilde{G}^{a,\mu\nu}$

Probing BSM couplings in the ggH vertex

Deviation from SM	
1.8σ	

CONCLUSIONS

- Presented a study in Run2 of CP nature of the ggF production mode in $H \rightarrow ZZ^* \rightarrow 4l$
- the framework of an effective Lagrangian extension of the SM
 - Pure CP odd scenario excluded
 - Up to 32% "CP odd" possible in mixed scenario (95%CL)
- Other measurements
 - $H \rightarrow \gamma \gamma$ <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-029/</u>
 - $H \rightarrow WW^*$

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

Constraints are placed on possible BSM interactions of the Higgs boson within

Than ks.

ATLAS DETECTOR

RUN1 EXCLUSION CALCULATION

atan(0.9)-atan(-2.3)=1.89 atan(inf)-atan(-inf)=6.28

1.89/6.28 ~ 30%

TENSOR STRUCTURE

- V^{μ} represents the vector-boson field (V = Z, W $V^{\mu\nu}$ are the reduced field tensors and the dual defined as $\tilde{V}^{\mu\nu} = 1/2\epsilon^{\mu\nu\rho\sigma}V_{\rho\sigma}$.
- $\kappa_{H\partial Z}$ and $\kappa_{H\partial W}$ corresponds to higher-order derivative operatos, which have been neglected in this analysis
- Couplings are assumed to be real in order to ensure Lagrangian terms Hermitian
- $g_{HVV} \propto m_{Z/W}^2$

$$\mathcal{L}_{0}^{V} = \begin{cases} c_{\alpha}\kappa_{SM} \left[\frac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu} + g_{HWW}W_{\mu}^{+}W^{-\mu}\right] \\ -\frac{1}{4}\frac{1}{\Lambda} \left[c_{\alpha}\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + s_{\alpha}\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu} - \frac{1}{2}\frac{1}{\Lambda} \left[c_{\alpha}\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu} + s_{\alpha}\kappa_{AWW}W_{\mu\nu}^{+}\tilde{W} \right] \\ tensor is \\ -\frac{1}{\Lambda}c_{\alpha} \left[\kappa_{H\partial Z}Z_{\nu}\partial_{\mu}Z^{\mu\nu} + \kappa_{H\partial W}(W_{\nu}^{+}\partial_{\mu}W^{-\mu\nu} + h) \right] \end{cases}$$

CLASSIFICATION OF THE HIGGS BOSON PRODUCTION MODES

- In base of the production processes exclusive regions of the phase space are defined. These ones are called "production bins".
- The bins are chosen in such a way that the measurement precision is maximized and at the same time possible BSM contributions can be isolated.

CATEGORIES

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

Nikhef

$H \rightarrow ZZ^* \rightarrow 4l - MAIN PICTURE$

- Signal samples
 - The signal is modelled using the POWHEG Monte Carlo event generator at NLO. QCD corrections up to NLO and QCD soft-gluon re-summations up to next-to-next-
 - to-leading logarithm are applied.
 - The Higgs boson decay branching ratio in this final state is predicted by Prophecy4f, with includes NLO QCD+EW corrections, the interferences effects between identical final states and the leading two-loop heavy Higgs boson corrections to the fourfermion width.
- Main Background
 - continuum $((Z^{(*)}/\gamma^{(*)})(Z^{(*)}/\gamma^{(*)}))$ production
 - Sherpa 2.2.1 generator
 - Matrix elements contain all diagrams with four electroweak vertices. They are calculated for up to 1 parton at NLO and up to 3 partons at LO

Bonus: CP study in the decay vertex

$H \rightarrow ZZ^* \rightarrow 4l, \kappa_{HVV} \text{AND} \kappa_{AVV} \text{FIT}$

$$\mathcal{L}_0^V =$$

$$-\frac{1}{4}\frac{1}{\Lambda}\left[\kappa_{HZZ}Z_{\mu\nu}Z_{\mu$$

- - - contributions

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

 $Z^{\mu\nu}$ + tan $\alpha \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ $\int_{\partial \nu} W^{-\mu\nu} + \tan \alpha \kappa_{AWW} W^+_{\mu\nu} \tilde{W}^{-\mu\nu}] \bigg\} \chi_0$

 Probing BSM couplings in the HVV vertex The total width of the Higgs boson is modified to take into account the changes in the BR due to the BSM

$H \rightarrow ZZ^* \rightarrow 4l, \kappa_{HVV} AND \kappa_{AVV} FIT$

$H \rightarrow ZZ^* \rightarrow 4l, \kappa_{HVV} AND \kappa_{AVV} FIT$

Asymmetry is expected due to the interference between SM and BSM contribution

Studying the CP nature of the Top-Yukawa coupling Federica Pasquali, MISP 2020

Nik[hef

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fi
<i>k</i> _{BSM}	configuration	conf. inter.	conf. inter.	$\hat{\kappa}_{\mathrm{BSM}}$	$\hat{k}_{\rm SM}$
KAgg	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-0.47, 0.47]	[-0.68, 0.68]	±0.43	-
κ_{HVV}	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-2.9, 3.2]	[0.8, 4.5]	2.9	-
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-3.1, 4.0]	[-0.6, 4.2]	2.2	1.2
KAVV	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-3.5, 3.5]	[-5.2, 5.2]	±2.9	-
K _{AVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-4.0, 4.0]	[-4.4, 4.4]	±1.5	1.2

 0.5σ

Nik hef

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fi
KBSM	configuration	conf. inter.	conf. inter.	$\hat{\kappa}_{\rm BSM}$	$\hat{\kappa}_{\rm SM}$
KAgg	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-0.47, 0.47]	[-0.68, 0.68]	±0.43	-
K _{HVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$	[-2.9. 3.2]	[0.8, 4.5]	2.9	-
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-3.1, 4.0]	[-0.6, 4.2]	2.2	1.2
K _{AVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} = 1)$	[-3.5. 3.5]	[-5.2, 5.2]	±2.9	-
κ_{AVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-4.0, 4.0]	[±1.5	1.2

Nikhef

BSM coupling	Fit	Expected	Observed	Best-fit	Best-fi
$\kappa_{\rm BSM}$	configuration	conf. inter.	conf. inter.	$\hat{\kappa}_{BSM}$	$\hat{\kappa}_{\rm SM}$
KAgg	$(\kappa_{Hgg}=1,\kappa_{\rm SM}=1)$	[-0.47, 0.47]	[-0.68, 0.68]	±0.43	-
K _{HVV}	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-2.9, 3.2]	[0.8, 4.5]	2.9	-
κ_{HVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-3.1, 4.0]	[-0.6, 4.2]	2.2	1.2
KAVV	$(\kappa_{Hgg} = 1, \kappa_{\rm SM} = 1)$	[-3.5, 3.5]	[-5.2, 5.2]	±2.9	-
κ_{AVV}	$(\kappa_{Hgg} = 1, \kappa_{SM} \text{ free})$	[-4.0, 4.0]	[-4.4, 4.4]	±1.5	1.2

Nikhef

Asymmetric because of κ_{HVV} κ_{SM} can contribute to absorb the asymmetry

Fit configuration	Best-fit $\hat{\kappa}_{HVV}$	Best-fit $\hat{\kappa}_{AVV}$	Best-fit $\hat{\kappa}_{SM}$	Deviation
$\kappa_{Hgg} = 1, \kappa_{SM} = 1$	2.9	±0.5	-	1.
$\kappa_{Hgg} = 1, \kappa_{SM}$ free	2.1	±0.3	1.7	1.

n from SM

.9σ

.2σ

Fit configuration	Best-fit $\hat{\kappa}_{HVV}$	Best-fit $\hat{\kappa}_{AVV}$	Best-fit $\hat{\kappa}_{SM}$	Deviation
$\kappa_{Hgg}=1,\kappa_{\rm SM}=1$	2.9	4 0.5		<u> </u>
$\kappa_{Hgg} = 1, \kappa_{SM}$ free	2.1	±0.3	1.7	1.

Federica Pasquali, MISP 2020

Fit configuration	Best-fit $\hat{\kappa}_{HVV}$	Best-fit $\hat{\kappa}_{AVV}$	Best-fit $\hat{\kappa}_{SM}$	Deviation
$\kappa_{Hgg} = 1, \kappa_{SM} = 1$	2.9	±0.5		NORTHING AND ADDRESS
$\kappa_{Hgg} = 1, \kappa_{SM}$ free	2.1	±0.3	1.7	1.

Federica Pasquali, MISP 2020