$\Xi_c(2645)$ and $\Xi_c(2815)$ production in **pp** interactions at the LHCb

Vladimir Chulikov, NRC KI - PNPI

1. Introduction

The **factorization approach** is used to describe the cross-sections of hard processes. The approach implies the separation of the proton interaction process into independent phases, each of which is characterized by its own dynamics. The **factorization formula** well demonstrates the dynamics of each phase.

5. Mass spectra and resolution

The probability density functions to approximate the mass spectra: • ground state: Ξ_c – Apollonious2; • excited states: $\Xi_{c}(2645)$, $\Xi_{c}(2815)$ – Breit-Wigner (BW);

• background part: 1-st order Bernstein polynomial.

To estimate the resolution:

The fragmentation processes are difficult to simulate. The information about them could be obtained by analyzing the so-called **fragmentation** fractions.

The fragmentation fraction – the probability of the **parton state** is hadronized to the corresponding observed hadronic state.

2. Motivation

The fragmentation fractions can be evaluated using the **relations between differential** production cross sections. The dynamics of fragmentation fractions is poor studied. It is interesting to understand fragmentation fraction universality in:

- •Different types of interacted systems;
- Different system's centrality;

- Merge 7 TeV and 8 TeV datasets; • Fix BW and background parameters on Particle Data Group values;
- Maximum likelihood fit by BW with Gaussian with free convoluted sigma-parameter.

6. Requirements

- The mass of ground state;
- The response of Neural Networks (**PID**); • The $\log_{10} \chi_{ip}^2$ - requirement.
- Does the $\log_{10} \chi_{ip}^2$ cut changes the *R*?
- Fit mass spectra;
- Apply *sPlot* and take into account the signal part;
- Normalize and compare.

Energy resolution results:

 $Res(\Xi_{c}(2645)) = 817 \pm 35 \text{ keV};$ $Res(\Xi_c(2815)) = 1114 \pm 101 \text{ keV}.$

•Different pT-y intervals.

There is no study of excited charm baryons fragmentation fractions.

3. Why the LHCb?

• A single-arm forward spectrometer;

• The production cross-section of *cc*-pairs at 7 TeV: 6.10 ± 0.93 mb; • LHCb acceptance \rightarrow 1 fb⁻¹ corresponds to 10¹² decays of *c*hadrons;

7. Systematic uncertainties

From chosen model of signal and background	From model parameters	From width fixing	From non- prompt events
Applied an approximation with alternative model and calculate the	 Covariance matrix of fit Randomize parameters by the covariance 	 Generate MC- width based on PDG width of the resonance Fit with fixed 	Simultaneous fit of Ξ_c -mass spectra's prompt and non-prompt components.
difference to the number of events in mass spectra.	 Refit with alternative parameters and get number of events . 	• Got the result- distribution's Sigma/N events.	$\begin{bmatrix} 2500 \\ 2000 \\ 1500 \\ 1000 \\ 500 \\ 0 \\ -2 \\ -1 \\ 0 \\ 0 \\ -2 \\ -1 \\ 0 \\ 0 \\ -2 \\ -1 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $

4. Main steps of the analysis

To measure the relation of differential cross-section values (**R**) for $\Xi_c(2645)$, $\Xi_c(2815)$ to its ground state, using data collected by the LHCb detector at 7 TeV (1 fb⁻¹) and 8 TeV (2 fb⁻¹):

$$R_{Y_c} = Br(Y_c \to \Xi_c) \frac{d^2 \sigma_{Y_c}/dp_T dy}{d^2 \sigma_{\Xi_c}/dp_T dy} \approx \frac{f(c \to Y_c)}{f(c \to \Xi_c)}$$

- Measurements of **R** uncorrected;
- Resolution evaluation;
- Optimization of the requirements;
- Estimation of systematic uncertainties;
- Calculation of the corrected **R**.

 $E_c^+ \rightarrow p K^- \pi^+$ $E_c(2645)^0 \rightarrow E_c^+\pi^ E_c(2815)^+ \to E_c(2645)^0\pi^+$

8. Results

• The **R** is measured in kinematic bins for Ξ_c baryons;

• The systematic uncertainties related to fit models and prompt fraction are estimated;

• The significant deviation from the universality hypothesis is not observed.

