Tasks for seminar




1. Estimate the arrival time delay of mass eigenstates of an electron neutrino with energy
15 MeV born in SN 1987A, assuming my = 0, my = 8.6, m3g = 50 meV.

Antlia 2

Inputs: Distance from LMC is about 50 kps (experimental range is 40-55 kps),
1 ps ~ 30.9 x 102 km.



1. Estimate the arrival time delay of mass eigenstates of an electron neutrino with energy
15 MeV born in SN 1987A, assuming m; = 0, my = 8.6, mg = 50 meV.

Antlia 2

Inputs: Distance from LMC is about 50 kps (experimental range is 40-55 kps),
1 ps ~ 30.9 x 102 km.
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Solution: 6ty; ~ — St~ 85x1077s, ft13~29x 1077 s.



2. Estimate the pion production threshold in a collision of a CR proton with a CMB photon.

p (p,) n(p,) »(p) p (p,)

At At

v (p,) ™ (p,) 7 (p,) T (p,)

Inputs: (E,)cme = (hvy) = kpTcve =~ 2.349 X 1074 eV, m, .+ ~ 139.56995 MeV,
myo =~ 134.97660 MeV, m,, ~ 938.27231 MeV, m,, ~ 939.56536 MeV.



2. Estimate the pion production threshold in a collision of a CR proton with a CMB photon.
p (p,) n(p,) »(p) p (p,)

At At

v (p,) ™ (p,) 7 (p,) T (p,)

Inputs: (E,)cme = (hvy) = kpTcve ~ 2.349 X 1074 eV, m,+ ~ 139.56995 MeV,
myo =~ 134.97660 MeV, m,, ~ 938.27231 MeV, m,, ~ 939.56536 MeV.

Solution: s = (p; +p,)° = m2 + 2E., (Ey — Py cosf), where Ef = PY +m2,

Pi = |p1]. On the other hand, s = (ps + px)> = (p5 + p=)°, where * marks the center of
mass frame of the final state (p} + p* = 0) = s = (B + E*)*> > (my +m,)” =

2, (Ey — Picosf) > (my +mx)” —m2. Clearly P2 > m? =

( h
9 3.0 x 10%° <Ei> eV for py = nrt,

(mpy —I—mw)2 —m
Eth = E1| O—r ~ P K

=

4By 2.9 x 1020 V)

eV for py — pr®.
\ Y



3. Estimate the maximum energy of the neutrino from a GZK pion.
Inputs:  m, ~ 139.569950 MeV, m,, ~ 105.658387 MeV, m, =~ 0.51099907 MeV.



3. Estimate the maximum energy of the neutrino from a GZK pion.
Inputs:  m, ~ 139.569950 MeV, m,, ~ 105.658387 MeV, m, =~ 0.51099907 MeV.
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Solution: FE} = —r 4t — E, =T (Er —vplr) — EM** x — L\ E,

2m m2

— B ~ 0.42691E; for v, and 0.999987E . for v,.



Prove that any nonsingular matrix M can be diagonalized by a bi-unitary transformation

M = VmV', m = ||mydu|| = diag (m1,ma,...,mn), mi >0, VVIi =VVi=1.

Comment: Recall that this theorem plays an important role in the theory of the Dirac
neutrino.



4. Prove that any nonsingular matrix M can be diagonalized by a bi-unitary transformation

M = VmV', m = ||mydu|| = diag (m1,ma,...,mn), mi >0, VVIi =VVi=1.

Comment: Recall that this theorem plays an important role in the theory of the Dirac
neutrino.

Proof: Matrix MM is Hermitian, (1\/IM]L)T = MM, — there exist a unitary matrix

V such that N N
VT (MM") V = m? = diag (m3,m3,...,m%),

~ ~ T
where m? > 0 for any 4. Indeed, MTV = (VTM) and thus

m; = Z (VTM>

J

> 0;

)

(VTM Z‘ VTM

]

2 .

the equality is however excluded since m~ is nonsingular. Let’'s now define the matrix

V = M/Vm~!. We have:
Vi=m 'VIM = VIiV=m !'VIMM/Vm™ =1,

that is the matrix V is unitary and VIMV = m.



5. Find the masses of physical neutrinos for the Lagrangian with a mass matrix

m m
M = L b ; (mL,R,D>O).

mp MR

Comment: Recall that this trivial example is the basis for the see-saw mechanism.



5. Find the masses of physical neutrinos for the Lagrangian with a mass matrix

My, M
M = L 1 (ML’R71’2 > 0)
M, Mg

Comment: Recall that this trivial example is the basis for the see-saw mechanism.

Solution: Eigenvalues my o of the matrix M satisfy the equation det(A — M) = 0.
Therefore \> — (M, + Mg) XA+ My Mg — MM, = 0. The solution is

1
Ap = 5 [ML+MR:|: \/(ML —MR)2—|—4M1M2

Note: \_ can be negative if MMy > My Mg. Since, however, the sign of the
eigenfields can always be redefined, the physical masses are m; = Ay and my = |A_|.

Let's now try to diagonalize M by a unitary transformation
VIMV = diag(A_,\) = m. (1)
Since the M is positive definite, VI = VT — V is just a rotation matrix,
V cosf)  sin6 VT o cosf) —sinf CvVT o1
—sinf cos6 sinf  cos6

From Eq. (1) we have



ViV’ = M —— ((30829)\_ +sin?0 Ay, sinfcosf (A, —)\_)> _ <ML Ml) .

sinfcos® (A_ +A_) cos?OA, +sin?O\_ M, Mg
Oh, the horror! We got sinfcosf (AL — A_) = M7 and sinfcos@ (A_ + A_) = Ms.
What does that mean?! Nothing unexpected. The Majorana mass matrix should be

symmetric, otherwise the unitary transformation we need does not exist. So further we
put My = My = Mp. The order of the eigenvalues in Eq. (1) provides 8 > 0. We have

(cos® @ —sin®6) (A\y —A_) = Mg — M, and sinfcosf (Ay — A\_) = Mp.

Given that cos? 0 — sin® 0 = cos 20 and 2sin 6 cos § = sin 20 we obtain

2M 1 2M
tan 20 = D <= Hz—arctan( D )

Mpgr — My, 2

Mpgr — My,

Let’'s now consider the most interesting special case
Mgr =M > Mp =m and My, = 0. Then

2

|~ m2/M<m < M

AL~ M, )\_:—mﬁz—em, and 92%.
This is the see-saw case: m; = Ay is a large
(GUT?) mass and my = —A_ is a small mass.




