

Федеральное государственное бюджетное учреждение науки

Физический институт имени П.Н. Лебедева

Российской академии наук

CP-violation measurement in $D^0 \rightarrow K_S^0 K_S^0$ decays at CMS experiment

<u>Vladimir Sergeychik</u>, Sergey Polikarpov

vladimir.sergeychik@cern.ch, sergey.polikarpov@cern.ch

Moscow International School of Physics 2024

The work is supported by RSF (grant № 24-22-00445)

Agenda

- Introduction
- Data sample
- ACP in MC
- Fits to data
- Systematics uncertainties
- Results
- Summary

Introduction to the analysis

- We present preliminary results of a measurement of the CP-violation parameter A_{CP}(D⁰ → K⁰_S K⁰_S)
- CP-violation in up-quark sector is not studied as well as in down-quark sector, but it is crucial for better understanding of BSM effects
- This difference has never been calculated:
 - The only existing observation of CPV in charm: $A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-) = (-15.4 \pm 2.9) \times 10^{-4}$
 - <u>Theoretical SM calculations</u> predict CPV in $D^0 \rightarrow K_S^0 K_S^0$ to be as large as $O(1\%) \leftarrow$ more significant then in many other D^0 decay channels
 - Latest experimental calculation by LHCb:

 $A_{CP}(D^0 \rightarrow K_S^0 K_S^0) = (-3.1 \pm 1.2 \pm 0.4 \pm 0.2)\% \leftarrow no CPV$

- Many systematic uncertainties in A_{CP} cancel if measured via ΔA_{CP}

CMS-PAS-BPH-23-005

CMS experiment at CERN

- The set of single muon triggers with different thresholds on muon p_T and impact parameter are used
- Due to these thresholds, most(~ 75-80%) of the events in dataset come from beauty semi-leptonic decays b $\rightarrow \mu X$
- Almost every time $b \rightarrow \mu c \nu X$
- The muon p_T cut at trigger level: 7-12 GeV => D has a high p_T , as both c and μ come from energetic b-hadron
- Thus, b-parking has $O(10^{10})$ events with charm hadrons with relatively high $p_T =>$ it is perfect for CPV search

• We want to measure the CP asymmetry, defined by the formula:

$$A_{CP}(f) \equiv \frac{\Gamma\left(D^0 \to f\right) - \Gamma\left(\bar{D}^0 \to f\right)}{\Gamma\left(D^0 \to f\right) + \Gamma\left(\bar{D}^0 \to f\right)}$$

- We are tagging flavor of D⁰ by the pion charge: $\mathrm{D}^{*+}~ o~\mathrm{D}^0\pi^+$ $D^{*-}~ o~\overline{\mathrm{D}}^0\pi^-$
- The number of observable candidates is connected with decay width:

$$N\left(\stackrel{(-)}{D^{0}}\rightarrow K^{0}_{S}K^{0}_{S}\right) \propto \sigma\left(D^{*\pm}\right)\varepsilon^{\pm}\Gamma\left(\stackrel{(-)}{D^{0}}\rightarrow K^{0}_{S}K^{0}_{S}\right)$$

• A_{CP} is connected to raw, production and detection asymmetries as:

$$A_{CP} = A_{CP}^{raw} - A_{\sigma} - A_{det} \qquad A_{raw} = \frac{N(D^0) - N(\overline{D}^0)}{N(D^0) + N(\overline{D}^0)} \qquad A_{det} = \frac{\varepsilon_+ - \varepsilon_-}{\varepsilon_+ + \varepsilon_-} \qquad A_{\sigma} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

• Assuming that A_{σ} and A_{det} are almost identical in both channels, ΔA_{CP} can be calculated as: $\Delta A_{CP} = A_{CP}^{raw}(D^{0} \rightarrow K_{S}^{0}K_{S}^{0}) - A_{CP}^{raw}(D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) \longleftarrow Largely insensitive to systematics!$

Event selection in data and MC

Data:

- $K_S^0 \pi \pi$ (normalization channel) and $K_S^0 K_S^0$ (signal channel) channels have almost identical kinematics and topology => the reconstruction efficiencies asymmetries cancel in the measured difference of differences ΔA_{CP}
- K_S^0 reconstructed from $\pi\pi$ fitted to the vertex with PDG mass constraint
- D^0 momentum points to PV
- D^0 is the result of $K^0_S K^0_S$ or $K^0_S \pi \pi$ vertex fit
- $D^{*\pm}$ is the result of $D^0 \pi^{\pm}$ vertex fit
- Selection criteria were optimized for improving accuracy of signal extraction in $D^0 \to K^0_S \, K^0_S$

MC:

• Generated with PYTHIA 8.230 and processed with GEANT-4 to include CMS detector simulation particularities

 ΔA_{CP}^{raw} in MC

 ΔA_{CP}^{raw} in whole MC sample: (0.126 ± 0.336)%

Perfect agreement with 0!

Possible p_{T} , η or ϕ dependence in individual channel cancels out in ΔA_{CP} – as expected!

Signals and A_{CP}^{raw} in $D^0 \rightarrow K_S^0 \pi^+ \pi^-$

Signals and A_{CP}^{raw} in $D^0 \rightarrow K_S^0 K_S^0$

CMS-PAS-BPH-23-005

Sources of systematical uncertainties

Source	Uncertainty, %
$m(D\pi^{\pm})$ signal model	0.10
$m(D\pi^{\pm})$ background model	0.02
$m(K_{S}^{0}K_{S}^{0})$ signal model	0.04
$m(K_{S}^{0}K_{S}^{0})$ background model	0.02
$m(K_{S}^{0}K_{S}^{0})$ fit range	0.04
Reweighting	0.09
ΔA_{CP} in MC	0.13
Total	0.20

Systematics is much smaller than statistics: 0.2% vs. 3%

Summary

• We present the first measurement of CP-violation in charm in CMS

 $\mathbf{A}_{CP}(\mathbf{D}^{0} \rightarrow \mathbf{K}_{S}^{0} \mathbf{K}_{S}^{0}) \ (via \ \Delta A_{CP} = A_{CP}(D^{0} \rightarrow \mathbf{K}_{S}^{0} \mathbf{K}_{S}^{0}) - A_{CP}(D^{0} \rightarrow \mathbf{K}_{S}^{0} \pi^{+} \pi^{-}))$

- Using 2018 b-parking dataset with a lot of charm hadrons produced in semileptonic b decays
- The resulting ΔA_{CP}^{raw} :

 $\Delta A_{CP}^{raw} = (6.3 \pm 3.0 \text{ (stat)} \pm 0.2 \text{ (syst)})\%$

• Using PDG A_{CP} ($D^0 \rightarrow K_S^0 \pi^+ \pi^-$), we derive the A_{CP} ($D^0 \rightarrow K_S^0 K_S^0$):

 $A_{CP} (D^0 \rightarrow K_S^0 K_S^0) = (6.2 \pm 3.0 \text{ (stat)} \pm 0.2 \text{ (syst)} \pm 0.8 (A_{CP} (D^0 \rightarrow K_S^0 \pi^+ \pi^-)))\%$

- The result is consistent with **no CPV in D^0 \rightarrow K^0_S K^0_S at the level of 2.0\sigma**
- The value is consistent with LHCb measurement at the level of 2.7σ ((6.2 ± 3.1)% vs. (-3.1 ± 1.3)%)
- This measurement paves the way for future charm CP-violation searches in CMS

Thank you!

Back-up

Motivation: LHCb results

Observation of CP violation in charm (2019)

$$A_{CP}(D^0 \longrightarrow K_S^0 K_S^0)$$

LHCb Coll. "Measurement of CP asymmetry in D0 K S0 K S0 decays." Physical Review D 104 (2021): L031102.

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$

LHCb Coll. "Observation of CP violation in charm decays." Physical review letters 122, no. 21 (2019): 211803.

Event selection

Event selection in data and MC

Data:

- $K_S^0 \pi \pi$ (normalization channel) and $K_S^0 K_S^0$ (signal channel) channels have almost identical kinematics and topology => the reconstruction efficiencies asymmetries cancel in the measured difference of differences ΔA_{CP}
- PV is selected from offlinePrimaryVertices (miniAOD), as the one with the smallest angle
 (α) between the D0 momentum and vector joining PV with the fitted D0 vertex
- K_S^0 reconstructed from $\pi\pi$ fitted to the vertex with PDG mass constraint
- D^0 momentum points to PV
- D^0 is the result $K_S^0 K_S^0$ or $K_S^0 \pi \pi$ vertex fit
- $D^{*\pm}$ is the result of $D^0 \pi^{\pm}$ vertex fit
- Muon firing the trigger is not used
- Selection criteria were optimized for improving accuracy of signal extraction in $D^0 \rightarrow K_s^0 K_s^0$

MC:

- Generated with PYTHIA 8.230 and processed with GEANT-4 to include CMS detector simulation particularities
- prompt D^{*±} sample (60 million events)
- $D^{*\pm}$ produced in the decay $B^0 \rightarrow D^{*\pm}X$ (30 million events)
- D^{\pm} produced in the decay B^{0} -> $D^{\pm}X$ (30 million events)
- The same selection criteria as in data

Multiplicity

- The multiplicities are studied with final cuts
- The vast majority of events have just 1 candidate
- The effect of multiplicity is neglected and we can ignore it

Impact of pile-up

PU in the analysis does not effect the essential distribution of $M(D \pi)$ => it can be neglected

2d-fit

Cross-checks: different masses D*+ and D*-

• Conclusions: the deviation is not significant -- just a fluctuation?

Cross-checks: floating width

- MC is not well-modelled, hence, could be a bit unreliable
- Alternative: to float the width of first Johnson from DJH of 2D-fit, instead of setting it equal to the data/MC scaling (the ratio of the widths of Johnson functions is fixed from MC)
- Results:

 $A_{CP}^{raw}(D^0 \to K_S^0 K_S^0) = (7.047 \pm 3.027)\% \longrightarrow A_{CP}^{raw}(D^0 \to K_S^0 K_S^0) = (7.065 \pm 3.021)\%$

- Not significant change (0.018%)
- This model is chosen as the baseline

Projections of 2D-fit of m(D*) vs m(D⁰): D⁰ candidates

CMS-PAS-BPH-23-005

Projections of 2D-fit of m(D*) vs m(D⁰): D ⁰ candidates

CMS-PAS-BPH-23-005

Data and MC

Normalization channel: comparison of MC and data

• Disagreement in MC and data variables distribution

MC does not have the "right mixture" of triggers, in MC they are always-on and the event is recorded even if no trigger fired

• There are 9 triggers in B-parking data/MC

•HLT_Mu10p5_IP3p5_p •HLT_Mu9_IP6_p •HLT_Mu9_IP5_p •HLT_Mu9_IP4_p •HLT_Mu8p5_IP3p5_p •HLT_Mu8_IP6_p •HLT_Mu8_IP5_p •HLT_Mu8_IP3_p •HLT_Mu7_IP4_p

- We call "Trigger 10" as "any of triggers 1-9 fired"
- We compare D* signals (Norm channel) in MC and in data: the $p_{T}\!$, and η distributions

Amount of signal in MC and data

Nº of trigger	Trigger in Xbframe	Signal in data	Signal in MC
TRIG_0	HLT_Mu12_IP6_p	609458±2390	7153±104
TRIG_1	HLT_Mu10p5_IP3p5_p	15841±373	0
TRIG_2	HLT_Mu9_IP6_p	1266200±3260	14254±134
TRIG_3	HLT_Mu9_IP5_p	872601±2780	16084±153
TRIG_4	HLT_Mu9_IP4_p	0	18083±163
TRIG_5	HLT_Mu8p5_IP3p5_p	22380±449	0
TRIG_6	HLT_Mu8_IP6_p	368729±1730	18942±175
TRIG_7	HLT_Mu8_IP5_p	420141±1930	21423±190
TRIG_8	HLT_Mu8_IP3_p	148801±1140	27599±232
TRIG_9	HLT_Mu7_IP4_p	571352±2200	32684±220
TRIG_10	At least one of them	1846890±4750	68352±616

The shapes when a particular trigger has triggered $(p_T(D^*))$

In each individual trigger the shapes are in agreement!

The shapes when a particular trigger has triggered ($p_T(\pi)$)

In each individual trigger the shapes are in agreement!

The shapes when a particular trigger has triggered (η (D*))

In each individual trigger the shapes are in agreement!

The shapes when a particular trigger has triggered (η (π))

In each individual trigger the shapes are in agreement!

Weight coefficients for MC events

implemented as selection based on event number, not the "proper" weight

Trigger number	Name in Xb_frame	Weight coefficient
TRIG_0	HLT_Mu12_IP6_p	0.959158
TRIG_1	HLT_Mu10p5_IP3p5_p	1
TRIG_2	HLT_Mu9_IP6_p	1
TRIG_3	HLT_Mu9_IP5_p	1
TRIG_4	HLT_Mu9_IP4_p	1
TRIG_5	HLT_Mu8p5_IP3p5_p	1
TRIG_6	HLT_Mu8_IP6_p	0.219137
TRIG_7	HLT_Mu8_IP5_p	0.220775
TRIG_8	HLT_Mu8_IP3_p	0.060694
TRIG_9	HLT_Mu7_IP4_p	0.19679

The shapes after reweighting

Disagreement in some variables

Probably could be fixed by generating more prompt MC and summing prompt and non-prompt MC in the right proportion?

- The reweighting resulted in better agreement between MC and data in kinematic variables
- However, some variables, such as vertex displacement, still disagree between MC and data
- We also have too few MC events left in the signal channel after weighting&trigger
- Hence, it was decided to perform optimization on data directly, instead of MC
 - This will not bias the ACP measurement, if done carefully
 - since at no point we use the D* meson charge in the optimization

p_{T} -reweighting

p_{T} -reweighting in $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$

Different kinematics in norm and signal channels => detection and production asymmetries do not fully cancel out (can be seen from the comparison of $p_T(D^{*\pm})$ distributions in $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ and $D^0 \rightarrow K_s^0 K_s^0$)

36

$M(K_S^0\pi^+\pi^-) vs p_T(D^*)$ correlation

Hence, we can freely use splot based on $M(K_{S}^{0}\pi^{+}\pi^{-})$ distribution for Pt-reweighting

p_T -reweighting for π^+ and π^-

- Mismatch of $D^0 \rightarrow K^0_S \pi^+ \pi^-$ and $D^0 \rightarrow K^0_S K^0_S$ can be different for π^+ and π^-
- Can be checked through the comparison of Norm/signal ratio for $p_T(D^{*+})$ and $p_T(D^{*-})$:

The weights are consistent between "+" and "-" across the relevant p_T range!

sPlots to extract the signals

Alternative Pt-reweighting: splot vs sideband-subtraction

 $A_{CP}^{raw}(D^0 \rightarrow K_S^0 \pi^+ \pi^-) = (0.572 \pm 0.096)\%$

Sideband:

LSB: 2.006 GeV < M($K_{S}^{0}\pi^{+}\pi^{-}$) < 2.0078 GeV SIG: 2.0078 GeV < M($K_{S}^{0}\pi^{+}\pi^{-}$) < 2.013 GeV RSB: 2.013 GeV < M($K_{S}^{0}\pi^{+}\pi^{-}$) < 2.016 GeV

 $Pt_{SIG} - 0.5*Bgd_{SIG}*(Pt_{LSB}/Bgd_{LSB} + Pt_{RSB}/Bgd_{RSB})$

 $A_{CP}^{raw}(D^0 \rightarrow K_S^0 \pi^+ \pi^-) = (0.516 \pm 0.086)\%$

Identical values!

Cross-check: p_T of tagging pion

- Asymmetries are actually sensitive to the asymmetries between $\pi^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle -}$
- BUT: we use identical selection criteria for D⁰ → K⁰_S K⁰_S and D⁰ → K⁰_S π⁺π⁻ during D^{*±} reconstruction => p_T(D^{*±}) and p_T(π[±]) are highly correlated and all the differences between the shapes of p_T(D^{*±}) spectra signify that pion pt spectra have such deviations as well
- The $p_T(D^{*\pm})$ -reweighting results in the fixing of $p_T(\pi^{\pm})$ as well!

As alternative: we performed the same procedure but with p_T-reweighting based on p_T(π[±]) spectra comparison.
 We include the difference between the final value with p_T(π[±]) and p_T(D^{*±}) reweighting it into the systematics, but it is not leading contribution (see systematics section).

A_{CP}^{raw} in MC

A_{CP}^{raw} as function of p_T , η and ϕ

- Cross-check the A_{CP}^{raw} in MC vs. p_T , η and φ
 - Also compare to data, in the normalization channel
- η ranges: [-1.340;-0.804], [-0.804;-0.268], [-0.268;0.268], [0.268;0.804], [0.804;1.340]
- φ ranges: [-3.140;-1.884], [-1.884;-0.628], [-0.628;0.628], [0.628;1.884], [1.884;3.140]
- p_T ranges in GeV: [3.78; 6.00], [6.00; 7.50], [7.50; 11.00], [11.00; 15.00], [15.00; ∞)

• pion charge tags the flavor: $Q > 0 \rightarrow D^0$, $Q < 0 \rightarrow anti - D^0$

Optimization of selection criteria

The strategy of the selection optimization

- dN/N the relative uncertainty in signal channel N^{raw} is optimized (D⁰ and $\overline{D^0}$ are not split during the optimization in order not to bias $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$)!
- The procedure *of k-fold cross-validation* is performed (k = 6) while choosing the optimal cut:

• Then the procedure is looped over other cuts

Local and global minimum

- The procedure is repeated until the criteria remain unchanged with further iterations (=> *the value is at "local minimum"*)
- Different starting point or another order of parameters may lead to another local minimum
- Among all found local minima the one with the smallest value of dN/N is chosen => global minimum
- The procedure was checked to be robust against different sets of starting cuts and orders of cuts to be optimized

The variables to cut

- p_{T} and η of tagging pion
- Topological variables of the fitted vertices
 - flight significances
 - Vertex fit probabilities
 - angle between the flight length and the momentum of D^* , D^0 , K_S^0
- p_T of soft K_S^0 , hard K_S^0
- η and p_T and D^0 and D^* are not considered, as being highly correlated with the slow pion

Optimization of selection

Different colors: 6 different combinations of subdatasets.

Points with error bars: dN/N minimum

(sorry that the plots are not readable: to be fixed next time)

Resulting optimized selection criteria

Example of parameter optimization: dN/N with different cuts on η of tagging pion. Different colors: 6 different subdatasets. Dots with errorbars are minimizing.

etapis

			Variable	Requirement
ξ	0.046	dN/N in dataset1	mass of $D^{*\pm}$	$2.006 \text{GeV} < M(D^{*\pm}) < 2.016 \text{GeV}$
Ę	E	dN/N in dataset2	mass of $D^0(\overline{D}^0)$	$1.770 \text{GeV} < M(D^0(\overline{D}^0)) < 1.950 \text{GeV}$
	0.044	dN/N in dataset4	$p_{\rm T}$ of tagging pion from ${\rm D}^{*\pm} \rightarrow {\rm D}\pi^{\pm}$	> 0.35 GeV
	F	dN/N in dataset5	η of tagging pion from $D^{*\pm} \rightarrow D\pi^{\pm}$	$-1.2 < \eta < 1.2$
	0.042	dN/N in dataset6	$max(p_{T}(K))$	> 2.2 GeV
	F		$min(p_{T}(K))$	> 1.0 GeV
	0.04	•••	$P_{vtx}(\mathbf{D}^{*\pm})$	> 5%
	F		$P_{vtx}(\mathbf{D}^0)$	> 1%
	0.038	Private work (CMS data)	$P_{vtx}(max(K_S^0))$	> 1%
	e ene	•	$P_{vtx}(min(K_{S}^{0}))$	> 1%
	0.036	• • •	$L_{xy}/\sigma_{L_{xy}}$, D ⁰ 2D displacement significance,	> 2
	0.034		$L_{xyz}/\sigma_{L_{xyz}}$, D ⁰ 3D displacement significance,	> 9
	F		$L_{xyz}/\sigma_{L_{yyz}}$, soft K ⁰ _S 3D displacement from D ⁰ significance,	> 9
	0.032		$L_{xyz}/\sigma_{L_{yyz}}$, hard K ⁰ _S 3D displacement from D ⁰ significance,	> 7
	F		$\cos(\vec{L}_{xyz}(D^0), \vec{p}(D^0))$ (3D)	> 0.979
	0.03		$\cos(\vec{L}_{rv}(D^0), \vec{p}(D^0))$ (2D)	> 0.972
			$\cos(\vec{L}_{yy}(D^0, Beams pot))$ (2D)	> 0.972
		0.5 1 1.5 2 2.5 cut on η(τ	r _s)	

The same cuts are applied for final $K_S^0 \pi^+ \pi^-$ fit: $p_T(\pi^+\pi^-) > 1.0 \text{ GeV}; p_T(K_S^0) > 2.2 \text{ GeV})$

Optimized selection criteria

Normalization channel cuts were chosen to match the cuts of the signal channel

Optimized selection criteria in signal channel:

Optimized selection criteria in normalization channel:

• •			
Variable	Requirement	Variable	Requirement
mass of $D^{*\pm}$	$2.006 \text{GeV} < M(D^{*\pm}) < 2.016 \text{GeV}$	mass of $D^{*\pm}$	$2.006 \mathrm{GeV} < M(\mathrm{D}^{*\pm}) < 2.016 \mathrm{GeV}$
mass of $D^0(\overline{D}^0)$	$1.770 \text{GeV} < M(D^0(\overline{D}^0)) < 1.950 \text{GeV}$	mass of $D^0(\overline{D}^0)$	$1.823 \text{GeV} < M(D^0(\overline{D}^0)) < 1.908 \text{GeV}$
$p_{\rm T}$ of tagging pion from ${\rm D}^{*\pm} ightarrow {\rm D}\pi^{\pm}$	> 0.35 GeV	$p_{ m T}$ of tagging pion from ${ m D}^{*\pm} o { m D}\pi^{\pm}$	> 0.35 GeV
η of tagging pion from $D^{*\pm} \rightarrow D\pi^{\pm}$	$-1.2 < \eta < 1.2$	η of tagging pion from $\mathrm{D}^{*\pm} o \mathrm{D}\pi^{\pm}$	$-1.2 < \eta < 1.2$
$max(p_{T}(K))$	> 2.2 GeV	$p_{\mathrm{T}}(\mathrm{K})$	> 2.2 GeV
$min(p_{T}(\mathbf{K}))$	> 1.0 GeV	$p_{\mathrm{T}}(\pi^{-}) + p_{\mathrm{T}}(\pi^{+})$	> 1.0 GeV
$P_{ntx}(\mathbf{D}^{*\pm})$	> 5%	$P_{vtx}(\mathbf{D}^{*\pm})$	> 5%
$P_{ntr}(\mathbf{D}^0)$	> 1%	$P_{vtx}(D^{0})$	> 1%
$P_{ntx}(max(\mathbf{K}^0_{s}))$	> 1%	$P_{vtx}(\mathbf{K}_{S}^{\circ})$	> 1%
$P_{ntx}(min(\mathbf{K}_{c}^{0}))$	> 1%	$L_{xy}/U_{L_{xy}}$, D ² 2D displacement significance,	> 2
L_{ru}/σ_{I} , D ⁰ 2D displacement significance,	> 2	$L_{xyz}/\sigma_{L_{xyz}}$, D° 3D displacement significance,	>9
$I = \frac{1}{\sigma_{xy}} = \frac{D^0}{2D}$ displacement significance	> 9	$L_{xyz} / \sigma_{L_{xyz}}$, K ⁰ _S 3D displacement from D ⁰ significance,	>7
$L_{xyz} / \sigma_{L_{xyz}}$, D^{-0} ob displacement from D^{0} significance,		$\cos(ec{L}_{xyz}(\mathrm{D}^0), \ec{p}(\mathrm{D}^0))$ (3D)	> 0.979
$L_{xyz}/\delta_{L_{xyz}}$, soft K _S 5D displacement from D ⁻ significance,	>9	$\cos(\vec{L}_{xy}(D^0), \vec{p}(D^0))$ (2D)	> 0.972
$L_{xyz}/\sigma_{L_{xyz}}$, hard K ⁰ _S 3D displacement from D ⁰ significance,	> 7	$\cos(\vec{L}_{xy}(D^0, Beamspot))$ (2D)	> 0.972
$\cos(\vec{L}_{xyz}(D^0), \vec{p}(D^0))$ (3D)	> 0.979		
$\cos(\vec{L}_{xy}(D^0), \vec{p}(D^0))$ (2D)	> 0.972		
$\cos(\vec{L}_{m})$ (D ⁰ , Beams pot) (2D)	> 0.972		
coo(2xy(2,) 2000 (22)			

Wrong vertex fit selection criteria

- "Wrong" vertex fits are performed:
 - In signal K⁰_SK⁰_S channel:

□ Attempt to fit all 4 pions into one vertex $\rightarrow P_{4\pi}^{\chi}$ (fit probability)

 \Box Attempt to fit one K_S^0 and two pions from another K_S^0 into one vertex

reproducing topology of normalization channel,

Done twice since we have two $\mathbf{K}^0_{\mathbf{S}}$ candidates $o P^{\chi 1}_{K\pi\pi}$ and $P^{\chi 2}_{K\pi\pi}$

• In reference channel:

 \Box Attempt to fit all 4 pions into one vertex $\rightarrow P_{4\pi}^{\chi}$

• Suppress background by:

 $P_{4\pi}^{\chi} < 10^{-8}$ (efficiency is 99.7% in both channels)

- Suppression $K^0_S \pi^+ \pi^-$ cross-feed into $K^0_S K^0_S$:
 - $P_{K\pi\pi}^{\chi 1}$ < 10⁻⁸ and $P_{K\pi\pi}^{\chi 2}$ < 10⁻⁸
 - Verified on MC: zero events cross-feed

D^0 vs. anti- D^0 in MC

optimized variables in MC: D⁰ vs. anti-D⁰

optimized variables in MC: D⁰ vs. anti-D⁰

Signal shape vs the D⁰ flavour

- Does the signal shape differ for D^{*+} and D^{*-} ?
- Comparing signal width in MC
 (with all other Johnson parameters fixed)

Widths are found to be identical between + and -

- Also in case of D⁰ signal
- Also in case we apply trigger&weights
- χ^2 /ndf show good fit quality

The shapes are the same. We are implementing a **simultaneous fit** on D^{*+} and D^{*–} samples, sharing the shape parameters and leaving only the yields to be independent

(no trigger requirement)