

CMS Experiment at the LHC, CERN Data recorded: 2017-Jul-31 02:43:27.876032 GMT Run / Event / LS: 300156 / 28539391 / 26



### Studies of $\Xi_b$ baryons spectroscopy at CMS

#### Kirill Ivanov<sup>1</sup> on behalf of the CMS Collaboration

kirill.ivanov@cern.ch

<sup>1</sup> Moscow Institute of Physics and Technology (MIPT)

**Moscow International School of Physics 2024** 

#### 1st March 2024

The work is supported by RSF (grant Nº 23-12-00083)



q denotes u or d quarks for  $\Xi_b^0$  or  $\Xi_b^-$ . L = 1 is the orbital excitation between the light diquark qs and heavy b quark.





q denotes u or d quarks for  $\Xi_b^0$  or  $\Xi_b^-$ . L = 1 is the orbital excitation between the light diquark qs and heavy b quark.





q denotes u or d quarks for  $\Xi_b^0$  or  $\Xi_b^-$ . L = 1 is the orbital excitation between the light diquark qs and heavy b quark.



### **Previous results of** $\Xi_{b}$ **resonances**



#### Kirill Ivanov, MISP-2024

#### Study of $\Xi_b$ baryon spectroscopy

## The CMS Experiment



- The CMS Experiment at the LHC was designed mainly for high- $p_T$  physics (Higgs, top-quark, SM precision measurement, New Physics searches etc)
- However, robust muon system, good  $p_T$  resolution and perfect vertex reconstruction provide promising opportunities for heavy flavour and quarkonia-related analyses





100

0

CMS BPH-23-002,

arXiv: 2402.17738

5.6

 $880 \pm 170$ 

5.8

5.9

 $M(J/\psi\Lambda K^{-})$  [GeV]

6.0

5.7

- Signal: double-Gaussian (MC-shape scaled to data); Background: linear/exponential function Partially reconstructed  $\Xi_b^- \to J/\psi \Sigma^0 K^-$  decay: asymmetrical Gaussian (from MC) photon from  $\Sigma^0 \to \Lambda \gamma$  is too soft to be reconstructed
- For  $\Xi_b^- \pi^+$  and  $\Xi_b^- \pi^+ \pi^-$  studies, fully reconstructed  $\Xi_b^-$  = green lines, ±54(±27) MeV for  $J/\psi \Xi^- (J/\psi \Lambda K^-)$  channels, partially reconstructed  $\Xi_b^-$  = purple lines, [5.63, 5.76] GeV window

20

0

5.6

5.8

5.7

5.9

6.0

 $M(J/\psi \Xi^{-})$  [GeV]



- <u>Signal shape</u>: Double Gaussian, shape is fixed from MC but allowed to be scaled from data <u>Background</u>: 1st order polynomial
- Local statistical significance from likelihood ratio technique (Sig. + Bkg. versus Bkg. only hypothesis) Well above 5 sigma for both  $\psi(2S) \rightarrow \mu^+\mu^-$  and modes  $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$
- Branching fraction of the new decay is estimated to be:  $R = \frac{\mathscr{B}\left(\Xi_{b}^{-} \to \psi(2S)\Xi^{-}\right)}{\mathscr{B}\left(\Xi_{b}^{-} \to J/\psi\Xi^{-}\right)} = \frac{N_{\Xi_{b}^{-} \to \psi(2S)\Xi^{-}}}{N_{\Xi_{b}^{-} \to J/\psi\Xi^{-}}} \cdot \frac{\mathscr{E}_{\Xi_{b}^{-} \to J/\psi\Xi^{-}}}{\mathscr{E}_{\Xi_{b}^{-} \to \psi(2S)\Xi^{-}}} \cdot \frac{\mathscr{B}\left(J/\psi \to \mu^{+}\mu^{-}\right)}{\mathscr{B}\left(\psi(2S) \to \mu^{+}\mu^{-}\right)} = 0.84^{+0.21}_{-0.19} \pm 0.10 \pm 0.02$ from data fits
  from MC simulation

## Exploration of $\Xi_h^- \pi^+$ system



 $\Xi_{\rm b}^- \pi^+$ 



Mass difference variable  $\Delta M = M(\Xi_b^- \pi^+) - M(\Xi_b^-) - m_{\pi^+}^{\text{PDG}}$ and PV refit technique (see backup) are used to improve detector resolution

 $\Delta M$  [GeV]

Combinatorial background is in agreement with wrong-sign (showing us that the bkg is combinatorial indeed)

![](_page_10_Figure_0.jpeg)

## Study of $\Xi_b^- \pi \pi$ invariant mass

![](_page_11_Figure_1.jpeg)

- Plots with no requirements of  $\Xi_b^{*0}$  in the  $\Xi_b^- \pi^+$  mass, with <u>opposite-sign (OS, circles)</u> and <u>same-sign (SS, band)</u> pions.
- No other peaks except 6100 near the threshold are observed in both OS and SS distribution
- Blue vertical line the mass where LHCb observed  $\Xi_b (6227)^-$  in the  $\Lambda_b^0 K^-$  and  $\Xi_b^0 \pi^-$  decay channels (we see nothing here)

### Observation of $\Xi_b(6100)^-$ baryon

![](_page_12_Picture_1.jpeg)

![](_page_12_Figure_2.jpeg)

systematics are implemented in  $\Gamma$  calculation

Kirill Ivanov, MISP-2024

<u>Relativistic Breit-Wigner convolved with</u>
 <u>MC resolution</u>,

background: threshold function  $(x - x_0)^{\alpha}$ . Simultaneous fit: common mass and natural width

- First observation of a new state, excited beauty strange baryon  $\Xi_b(6100)^-$ , expected to be the lightest orbital excitation with  $J^P = 3/2^-$ , beauty analogue of  $\Xi_c(2815)^0$
- Systematics studies: include variations of <u>fit model</u>, <u>fit range</u>, possible <u>data/MC</u> <u>difference</u>

At Moriond 2023 LHCb presented the **confirmation** of  $\Xi_b(6100)^-$  state

## **Conclusion and summary**

![](_page_13_Picture_1.jpeg)

 CMS Experiment is actively contributing to the heavy flavour physics, providing state-ofthe-art spectroscopy results

- We report the first observation of the new  $\Xi_b^- \to \psi(2S)\Xi^-$  decay and measure its branching fraction w.r.t. to the well-known  $\Xi_b^- \to J\psi\Xi^-$  to be  $R = 0.84 \substack{+0.23 \\ -0.22}$
- We perform a new precise measurement of the  $\Xi_b^{*0}$  baryon mass and natural width We also confirm the relative  $\Xi_b^{*0}/\Xi_b^-$  production rate to be  $R_{\Xi_b^{*0}} = 0.23 \pm 0.04$
- New beauty strange baryon is observed at mass  $6100.3 \pm 0.6$  MeV in  $\Xi_b^- \pi^+ \pi^-$  invariant mass spectrum and natural width < 1.9 MeV @ 95% CL
  - Consistent with being the lightest orbitally excited  $\Xi_b^-$  baryon with  $J^P = 3/2^-$  and orbital momentum L = 1 between b quark and light diquark ds
- All our  $\Xi_b^{*0}$  and  $\Xi_b(6100)^-$  results are in excellent agreement with those reported by the LHCb experiment, proving CMS validity in flavour field
- Stay tuned for the new beautiful and charm results from the CMS Collaboration!

![](_page_14_Picture_0.jpeg)

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-08 02:36:01.428900 GMT Run / Event / LS: 322430 / 379062570 / 243

# Thank you for your attention!

Do you have any questions?

![](_page_15_Picture_0.jpeg)

# Backup slides

## Branching fraction ratio discussion

CONS LONG LONG

- We compare our result for the measured  $\mathscr{B}$  ratio with other "similar" decays: a b-hadron  $H_b$  decays to  $J/\psi$  or  $\psi(2S)$  (both referred as  $\psi$ ) plus a light hadron h
- Our  $R(\Xi_b^- \to \psi \Xi^-)$  seems to be an agreement with others, but uncertainty is large
- The previously measured  $R(\Lambda_b^0 \to \psi \Lambda)$  ratio is in disagreement with the theory prediction will  $R(\Xi_b^- \to \psi \Xi^-)$  repeat this "baryon deviation"?

![](_page_16_Figure_5.jpeg)

- In general we do not see any clear, "straightforward" trend for these ratios, likewise there is no great theoretical model to describe this plot
- Both new, precise measurements of such ratios and theoretical predictions are required, especially for the beauty baryon sector ( $\Lambda_b$ ,  $\Xi_b$ ,  $\Omega_b$  decays...)

## Trigger strategy

![](_page_17_Picture_1.jpeg)

• While the analysis in general uses combination of all charmonia-compatible dimuon CMS HLT paths, we need to select a single dedicated HLT for  $\mathscr{B}$  and production measurements

to ensure robust signal yields and efficiency and cancel trigger-related systematics

- We select the HLT suitable for the decay topology; then re-do our fits it data to estimate signal yield N we use for the ratio measurements
- Generated MC events are required to pass the selected HLT using the same reconstruction algorithm we have for data → extract efficiency *e* for the for the ratio measurements

![](_page_17_Figure_6.jpeg)

This selection is very tough — there was no good inclusive dimuon HLT @ Run-2! New BPH Run-3 trigger Parking would significantly improve  $\psi \Xi^-$  signal

### **Recent confirmation from LHCb**

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

- **Our**  $\Xi_b(6100)^-$  **baryon is confirmed**, 2 new states with •  $\Xi_{h}^{0}$  observed and precise measurements are reported;  $\Xi_{h}^{*0}$  parameters are also updated
- Immense statistics of  $\Xi_b$  provided:  $\approx$  18 000 of  $\Xi_b^-$  v.s.  $\approx$  2 000 at CMS (and  $\approx$  30 000 of  $\Xi_{h}^{0}$  inaccessible to us)

| $\Xi_{b}^{*0}$ | $Q_0$ | $15.80 \pm 0.02 \pm 0.01$                     |
|----------------|-------|-----------------------------------------------|
| U U            | Г     | $0.87 \pm 0.06 \pm 0.05$                      |
|                | $m_0$ | $5952.37 \pm 0.02 \pm 0.01 \pm 0.6 (\Xi_b^-)$ |

![](_page_18_Figure_6.jpeg)

#### **Reported parameters are in** excellent agreement with us!

 $m_0$ 

### Theoretical prediction for $\Xi_b^{**-}$

Table 1: Theoretical predictions for  $\Xi_{b}^{**-}$  mass and natural width, given in MeV.

![](_page_19_Figure_2.jpeg)

Γ (MeV) [15]  $1/2^{-1}$  $^{2}P$ 2 0 Ξ, <sup>2</sup>P, 3/2 4 Γ (MeV) 2 For mass 6100,  $\Gamma = 1.3$ 0 6080 6100 6120 6140 M (MeV)

FIG. 2: Partial and total strong decay widths of the 1*P*-wave  $\Xi_b$  states as functions of their mass. The solid curves stand for the total widths.

![](_page_19_Figure_5.jpeg)

TABLE VII: Partial widths (MeV) and branching fractions for the strong decays of the 1*P*-wave states in the  $\Xi_c$  and  $\Xi_b$  families.

| $ ^{2S+1}L_{\lambda} J^{P} \rangle$  | State           | Channel              | $\Gamma_i$ (MeV)     | $\mathcal{B}_i$ | State           | Channel              | $\Gamma_i$ (MeV) | $\mathcal{B}_i$ |
|--------------------------------------|-----------------|----------------------|----------------------|-----------------|-----------------|----------------------|------------------|-----------------|
| $ ^2P_{\lambda}\frac{1}{2}^-\rangle$ | $\Xi_{c}(2790)$ | $\Xi_c'\pi$          | 3.61                 | 100%            | $\Xi_b(6120)$   | $\Xi_b'\pi$          | 2.84             | 98.61%          |
|                                      |                 | $\Xi_c^{\prime*}\pi$ | $3.9 \times 10^{-4}$ | $\simeq 0.0\%$  |                 | $\Xi_b^{\prime*}\pi$ | 0.04             | 1.39%           |
|                                      |                 | total                | 3.61                 |                 |                 | total                | 2.88             |                 |
| $ ^2P_{\lambda}\frac{3}{2}^-\rangle$ | $\Xi_{c}(2815)$ | $\Xi_c'\pi$          | 0.31                 | 14.69%          | $\Xi_{b}(6130)$ | $\Xi_b'\pi$          | 0.07             | 2.37%           |
|                                      | 51              | $\Xi_c^*\pi$         | 1.80                 | 85.31%          |                 | $\Xi_b^{\prime*}\pi$ | 2.88             | 97.63%          |
|                                      | 2]              | total                | 2.11                 |                 |                 | total                | 2.95             |                 |

FIG. 2: The obtained masses for the bottom-strange baryons. The red solid lines (left) correspond to the predicted masses of  $\Xi_b$  states which are composed of a good diquark and a bottom quark, while the blue solid lines (right) correspond to the  $\Xi'_b$  states which contain a bad diquark. Here, we also listed the measured masses of the ground states [1] and the  $\Xi_b(6227)^-$  [9], which are marked by "filled circle".

- [15] is <u>Phys. Rev. D 96, 116016 (2017)</u>
- [16] is <u>Phys. Rev. D 99, 094016 (2019)</u>
- [22] is <u>Phys. Rev. D 98, 031502 (2018)</u>

The  $\Xi_c(2815) \rightarrow \Xi_c(2645)\pi \rightarrow \Xi_c\pi\pi$  analogy

![](_page_20_Figure_1.jpeg)

previously observed  $\Xi_{h}^{*0}$ )

![](_page_21_Figure_0.jpeg)

Study of  $\Xi_b$  baryon spectroscopy

![](_page_22_Figure_0.jpeg)

Study of  $\Xi_b$  baryon spectroscopy

#### Different approaches for exited B-hadrons mass calculation

![](_page_23_Picture_1.jpeg)

- We can extract "raw" 4-momenta from prompt PV's tracks or make exited *B*-hadron vertex fit and extract 4-momenta from fit for signal enhancement (used in CMS  $B_c^+\pi^+\pi^-$  PRL 122 (2019) 132001 analysis)
- More complicated approach for exited *B*-hadrons study was applied for the current  $\Xi_b^- \pi^+(\pi^-)$  study (analogously to recent CMS  $\Lambda_b^0 \pi^+ \pi^-$  <u>PLB 803</u> (2020) 135345 analysis):
- We fit ALL the tracks forming the PV + *B*-candidate (about 20-100 tracks in each) and use 4-momenta from this vertex fit. The PV refitting procedure has improved the  $\Xi_b^- \pi^+ \pi^-$  mass resolution by up to 50%

![](_page_23_Figure_5.jpeg)