Observation of the $\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \psi \Xi^{-} \mathrm{K}^{+}$decay

Moscow International School of Physics 2024
Young Scientist Forum

Maksim Sergeev ${ }^{1,2}$
Sergey Polikarpov ${ }^{1,2}$

LHCB 2015

Introduction

1544 citations!

b hadron decays with charmonium and a baryon allow searching for pentaquarks in $\psi+$ baryon system in the intermediate resonance structure

LHCb, 2015: studied J/ $\boldsymbol{\Psi}$ p mass from $\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{pK}^{-}$ (full 6D angular analysis with interference between resonances)

Observed $\mathrm{P}_{\mathrm{c}}(4450)^{+}$and $\mathrm{P}_{\mathrm{c}}(4380)^{+}$

 pentaquark candidates!Confirmed later with a model-independent analysis (2016) Also seen in CS $\Lambda_{b}^{0} \rightarrow J / \psi p \pi^{-}$decay (2016)

2019: adding Run-2 data, $9 \times \Lambda_{b}^{0}$ yield. From 1D fit of J/ ψ p mass distribution, 4450 peak is now split into two;

+ observe a new resonance, $\mathrm{P}_{\mathrm{c}}(4312)^{+}$
"Too much data" for a full 6D angular resonance analysis to converge!

Introduction

In addition to $\mathrm{J} / \boldsymbol{\mu}$ pystem, also the $\mathrm{J} / \boldsymbol{\boldsymbol { }} \boldsymbol{\Lambda}$ system was investigated.

2020: 6D full angular analysis by LHCb of $\boldsymbol{\Xi}_{\mathrm{b}}^{-} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \boldsymbol{\Lambda} \mathbf{K}^{-}$decay revealed evidence for hidden-charm strange pentaquark $\mathrm{P}_{\text {cs }}(4459)^{0}$

CMS-BPH-18-005, JHEP 12 (2019) 100: Based on Run-1, CMS studied the $\mathbf{B}^{-} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \boldsymbol{\Lambda} \mathbf{p}^{-}$decay, data is consistent with no pentaquarks in $\mathrm{J} / \psi \wedge$ or $\mathrm{J} / \psi \rho$

LHCb 2022: with 6D amplitude analysis of $\mathbf{B}^{-} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \boldsymbol{\Lambda} \mathbf{p}^{-}$decay, observe new strange pentaquark $\mathbf{P}_{\text {cs }}(\mathbf{4 3 3 8})^{0} \rightarrow \mathbf{J} / \boldsymbol{\Psi} \boldsymbol{\Lambda}$
no significant states decaying to J/ $/ \boldsymbol{p}$
It is interesting to note that $\mathrm{J} / \psi \wedge$ pentaquarks are
found to be generally narrower than $\mathrm{J} / \psi \mathrm{p}$ states
$(7-17 \mathrm{Vs} \sim 10-200 \mathrm{MeV})$. Even narrower pentaquarks
are expected for doubly-strange hidden-charm $\mathrm{P}_{\text {css }}$.
Such states can decay into e.g. $\mathrm{J} / \Psi \mathrm{\Xi}^{-}$
This motivates our search for decays having
$\mathrm{J} / \Psi \Xi^{-}$in the decay products, i.e. $\Lambda_{\mathbf{b}}^{0} \rightarrow \mathrm{~J} / \psi^{-} \mathbf{K}^{+}$

Data and event selection

Mass constraints applied on $J / \psi \rightarrow \mu^{+} \mu^{-}, \wedge \rightarrow \mathrm{p} \pi^{-}$and $\Xi^{-} \rightarrow \wedge \Pi^{-}$
Λ_{b}^{0} obtained from vertex fit of $\mu^{+} \mu^{-} \Xi^{-} \mathrm{K}^{+}$
Normalization channel is chosen according to the similar decay topology, to reduce the systematic uncertainties associated with the track reconstruction:
$\Lambda_{\mathrm{b}}^{0} \rightarrow \psi(2 S) \wedge$, with vertex fit of $\mu^{+} \mu^{-} \wedge \pi^{+} \Pi^{+}$, and a requirement on $\mathrm{J} / \Psi \pi^{+} \Pi^{-}$mass to be close to $M^{\text {PDG }}(\Psi(2 S))$
Λ_{b}^{0} vertex should be away from PV in transverse plane
PV selected by smallest angle between Λ_{b}^{0}
momentum and the line joining PV and $\Lambda_{\mathrm{b}}^{\mathrm{s}}$ decay vertex

Optimization of selection criteria

Punzi formula is used for optimization,

with SC recommendation
as it does not rely on S normalization

$$
\boldsymbol{f}=\mathbf{S} /\left(\frac{463}{13}+4 \sqrt{\mathbf{B}}+5 \sqrt{25+8 \sqrt{\mathbf{B}}+4 \mathbf{B}}\right)
$$

S is number of signal events from MC (double-Gaussian function with common mean)
B is expected number of background events in the signal region
Extracted from data with $m_{P D G}\left(\Lambda_{b}^{0}\right) \pm 2 \sigma_{e f f}$ region excluded from the (bkg-only, exponential) fit.
Wrong-sign events are added to the sample to improve statistics.
CS and WS distributions are found to be consistent.
The bkg integral in the signal region is taken as B

Variables

Mass windows:

$$
m(\Lambda), m\left(\Xi^{-}\right)
$$

Distance significance between vertices

$$
L_{x y} / \sigma_{L_{x y}}\left(\Xi^{-}, \Lambda_{b}^{0}\right), L_{x y} / \sigma_{L_{x y}}\left(\Lambda, \Xi^{-}\right), \quad L_{x y} / \sigma_{L_{x y}}\left(\Lambda_{b}^{0}, \mathrm{PV}\right)
$$

Angle between particle momentum and the line passing joining its birth vertex and decay vertex

$$
\begin{gathered}
\cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Xi^{-}, \Lambda_{b}\right), \quad \cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Lambda, \Xi^{-}\right), \\
\cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Lambda_{b}, \mathrm{PV}\right)
\end{gathered}
$$

Transverse momentum

$$
p_{T}\left(\Lambda_{b}^{0}\right), p_{T}(\mathrm{~J} / \psi), p_{T}\left(\Xi^{-}\right), p_{T}(\Lambda), p_{T}\left(\mathrm{~K}^{+}\right), p_{T}\left(\pi^{-}\right)
$$

Vertex fit probabilities

$$
P_{v t x}\left(\Lambda_{b}^{0}\right) \quad P_{v t x}\left(\Xi^{-}\right) \quad P_{v t x}(\Lambda)
$$

Track impact parameter w.r.t. PV

$$
\operatorname{IPS}(\pi), \quad \operatorname{IPS}\left(\mathrm{K}^{+}\right)
$$

Calculation of branching fraction ratio

Ratio of the signal

$$
\begin{gathered}
\mathcal{B}(\psi(2 S) \rightarrow J / \psi \pi \pi)=(34.68 \pm 0.30) \% \\
\mathcal{B}(\Xi \rightarrow \Lambda \pi)=(99.887 \pm 0.035) \%
\end{gathered}
$$

$$
\frac{\epsilon_{\psi(2 \mathrm{~S}) \Lambda}}{\epsilon_{\mathrm{J} / \psi \Xi-\mathrm{K}}+}=\frac{4.00 \pm 0.10}{0.79 \pm 0.04}=5.06 \pm 0.29
$$

Invariant mass distributions

$\mathrm{J} / \psi \Xi^{-} K^{+}$Intermediate invariant mass distributions

Data: sPlot-bkg-subtracted
$m\left(\mathrm{~J} / \psi \Xi^{-}\right)[\mathrm{GeV}]$
No narrow peaks in J/ $\psi \Xi^{-}$; good data-MC agreement
(not unexpected with 46 signal events)

Systematic uncertainties

Total uncertainty is calculated as sum in quadrature of individual sources.

Summary

- First observation of $\Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi \Xi^{-} K^{+}$
- The first decay to have $\mathrm{J} / \Psi^{\Xi^{-}}$system in products
- No significant narrow peaks in J/ $\psi \Xi^{-}$mass distribution
- With 46 signal events, our sensitivity is very limited
- Measured branching fraction ratio:

$$
\mathcal{R} \equiv \frac{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \psi \Xi^{-} \mathrm{K}^{+}\right)}{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \rightarrow \psi(2 \mathrm{~S}) \Lambda\right)}=[3.38 \pm 1.02 \text { (stat) } \pm 0.61 \text { (syst) } \pm 0.03(\mathcal{B})] \%
$$

~ same order of magnitude as $\Lambda_{b}^{0} \rightarrow \mathrm{~J} / \psi \Lambda \varphi$ decay that has similar Feynman diagram:

$$
\frac{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \rightarrow \mathrm{~J} / \psi \Lambda \phi\right)}{\mathcal{B}\left(\Lambda_{\mathrm{b}}^{0} \rightarrow \psi(2 \mathrm{~S}) \Lambda\right)}=(8.26 \pm 0.90 \text { (stat) } \pm 0.68 \text { (syst) } \pm 0.11(\mathcal{B})) \times 10^{-2}
$$

The end.

BACKUP

The CMS detector

The central element of the CMS is a superconducting solenoid with an internal diameter of 6 m , providing a magnetic field of 3.8 T . Inside the solenoid are silicon pixel and strip detectors, electromagnetic and scintillation calorimeters.

Muons are measured using the following detectors: drift tubes, cathode strip chambers with resistive plates.

Triggers have 2 levels of information dropout:

- first-level trigger (L1) is a hardware system of triggers that decreases frequency of events to record from 40 MHz to 100 kHz
- high-level trigger (HLT) uses rapid algorithms of event partial reconstruction with decreasing the frequency to 1 kHz

Figure 2: CMS scheme

$\mathrm{J} / \psi \Xi^{-} \mathrm{K}^{+}$invariant mass distribution

[^0]
Optimization of selection criteria

Punzi formula is used for optimization, with sc recommendation as it does not rely on S normalization

$$
\boldsymbol{f}=\mathbf{S} /\left(\frac{463}{13}+4 \sqrt{\mathbf{B}}+5 \sqrt{25+8 \sqrt{\mathbf{B}}+4 \mathbf{B}}\right)
$$

S is number of signal events from MC (double-Gaussian function with common mean)
B is expected number of background events in the signal region
Extracted from data with $m_{P D G}\left(\Lambda_{b}^{0}\right) \pm 2 \sigma_{\text {eff }}$ region excluded from the (bkg-only, exponential) fit.
Wrong-sign events are added to the sample to improve statistics.
CS and WS distributions are found to be consistent.
The bkg integral in the signal region is taken as B

Optimization of selection criteria for $\mathrm{J} / \psi \Xi^{-} \mathrm{K}^{+}$

\checkmark Series of scans over variables performed to find optimal cut values to maximize the expected significance of the signal
\checkmark In each scan, the cut value when \boldsymbol{f} takes the largest value is recorded and used in the following scans
\checkmark When iteration shows the same result (cut values) as the previous one, the optimization is complete
\checkmark Selection criteria for normalization channel are chosen similar (as close as possible) to those found for the signal channel

Variables

Mass windows: $\quad m(\Lambda), m\left(\Xi^{-}\right)$
Distance significance between vertices

$$
L_{x y} / \sigma_{L_{x y}}\left(\Xi^{-}, \Lambda_{b}^{0}\right), \quad L_{x y} / \sigma_{L_{x y}}\left(\Lambda, \Xi^{-}\right), \quad L_{x y} / \sigma_{L_{x y}}\left(\Lambda_{b}^{0}, \mathrm{PV}\right)
$$

Angle between particle momentum and the line passing joining its birth vertex and decay vertex

$$
\begin{gathered}
\cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Xi^{-}, \Lambda_{b}\right), \quad \cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Lambda, \Xi^{-}\right), \\
\cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{T}}\right)\left(\Lambda_{b}, \mathrm{PV}\right)
\end{gathered}
$$

Transverse momentum

$$
p_{T}\left(\Lambda_{b}^{0}\right), p_{T}(\mathrm{~J} / \psi), p_{T}\left(\Xi^{-}\right), p_{T}(\Lambda), p_{T}\left(\mathrm{~K}^{+}\right), p_{T}\left(\pi^{-}\right)
$$

Vertex fit probabilities

$$
P_{v t x}\left(\Lambda_{b}^{0}\right) \quad P_{v t x}\left(\Xi^{-}\right) \quad P_{v t x}(\Lambda)
$$

Track impact parameter w.r.t. PV

$$
\operatorname{IPS}(\pi), \quad \operatorname{IPS}\left(\mathrm{K}^{+}\right)
$$

Systematic uncertainties

1) Uncertainty of efficiency ratio due to limited MC statistics
2) Signal model choice: try several alternative models, take the largest variation in R as systematics

- Student-T is baseline, alternatives are
- Double-gaussian
- Johnson PDF

3) Background model choice: several alternative models \rightarrow largest variation in R

- Exp is baseline, alternatives are
- $2^{\text {nd }}$ degree polynomial
- Modified threshold pdf $\left(x-x^{0}\right)^{a}$ • exp
- Modified threshold pdf $\left(x-x^{0}\right)^{a} \bullet$ Pol $_{1}$

4) Tracking efficiency: the pT spectra of the harder of the two tracks are found to differ significantly between signal and norm. channels \rightarrow conservatively taking 2.3% as additional systematic as if there were different number of tracks in 2 channels

CMS Private work (CMS data)

Systematic uncertainties - Potential non-psi(2S) contribution

CMS Private work (CMS data)

To estimate background under $\psi(2 S)$ we use sPlot method to subtract the background under Λ_{b}^{0}. The $\mathrm{m}(\mathrm{J} / \Psi \pi \pi)$ range was expanded to 5σ around $\mathrm{mPDG}(\psi(2 S))$. Integral of bckg function in baseline region
$[|\mathrm{m}(\mathrm{J} / \psi \pi \pi)-\operatorname{mPDG}(\psi(2 \mathrm{~S}))|<11.1 \mathrm{MeV}]$ is 30 ± 18
Thus, the additional systematic uncertainty is $30 / 1179=\mathbf{2 . 5 \%}$
1179 - the signal yield for R measurement cuts

Systematic uncertainties - Selection efficiency

Variable	10% drop (20\% drop)	$\mathcal{R}, \%$	$\mathcal{R}_{\text {uncor }}, \%$	$\sqrt{d^{2}-(\delta d)^{2}} / 3.38 \%$
$p_{\mathrm{T}}(\mu)$	4.45 GeV	3.50 ± 1.12	3.50 ± 0.53	-
$p_{\mathrm{T}}(\mu)$	$(4.8 \mathrm{GeV})$	3.03 ± 1.06	3.03 ± 0.42	-
$p_{\mathrm{T}}(\mathrm{J} / \psi)$	10.5 GeV	3.44 ± 1.14	3.44 ± 0.32	-
$\left.p_{\mathrm{T}} \mathrm{J} / \psi\right)$	$12.0 \mathrm{GeV})$	2.68 ± 1.14	2.68 ± 0.52	14.3%
$P_{v t x}(\mathrm{~J} / \psi)$	19%	3.25 ± 1.07	3.25 ± 0.41	-
$\left.P_{v t x} \mathrm{~J} / \psi\right)$	(30%)	3.35 ± 1.14	3.35 ± 0.56	-
$I P S\left(\mathrm{~K}^{+} \Lambda_{\mathrm{b}}^{0}\right)$	2.8	3.30 ± 1.04	3.30 ± 0.11	-
$I P\left(\mathrm{~K}^{+} \Lambda_{\mathrm{b}}\right)$	(3.45)	3.84 ± 1.20	3.84 ± 0.67	-
$p_{\mathrm{T}}\left(\pi_{\Xi}^{-}\right)$	0.55 GeV	3.60 ± 1.13	3.60 ± 0.45	-
$p_{\mathrm{T}}\left(\pi_{\Xi}^{-}\right)$	$(0.67 \mathrm{GeV})$	3.23 ± 1.15	3.23 ± 0.43	-
$\cos \left(\overrightarrow{L_{x y y}}, \overrightarrow{p_{\mathrm{T}}}\right)(\mathrm{J} / \psi-P V)$	0.9975	3.40 ± 1.07	3.40 ± 0.59	-
$\cos \left(\overrightarrow{L_{x y}}, \overrightarrow{p_{\mathrm{T}}}\right)(\mathrm{J} / \psi-P V)$	(0.9985)	3.77 ± 1.27	3.77 ± 0.50	-
$L_{x y} / \sigma_{L_{x y}}(\mathrm{~J} / \psi-P V)$	11.5	2.95 ± 1.03	2.95 ± 0.45	-
$L_{x y} / \sigma_{L_{x y}}(\mathrm{~J} / \psi-P V)$	(16.0)	2.90 ± 1.10	2.90 ± 0.53	-
Baseline		3.38 ± 1.02	3.38	

We strengthen the cut and evaluate the uncertainty in the phase space where
$d=2.68-3.38=0.70 \%$
\downarrow
Its uncertainty:
$\delta d=0.52 \%$
\downarrow
Square root difference
between them:
$\sqrt{d^{2}-(\delta d)^{2}}=0.47 \%$
\downarrow uncertainty :
$0.47 / 3.38=14.3 \%$ the signal events are located. We vary the each cut individually, strengthening the requirement until the efficiency is at 80% with respect to the nominal value and at 90% as a cross-check.

[^0]: Student-T function for signal
 Exponential for background

