Search for heavy neutrinos with the T2K near detector ND280 Konstantin Gorshanov

Institute for Nuclear Research of the Russian Academy of Sciences

Motivation

Update of the "Search for Heavy Neutral Leptons (HNLs) in T2K" analysis [1]:

- Including π^{\pm} decays to HNLs (in [1] only K^{\pm} decays);
- Including additional HNLs decay channels;
- Updated tracking & signal and backgrounds selection methods;

ND280 detector (2010-2022 configuration) **UA1 Magnet Yoke** BEAM

Schematic of production and decay modes included in analysis for HNL with $M_N < 493 MeV/c^2$.

Solenoid Coil

- UA1 magnet dipole magnetic field 0.2 T
- P0D π^0 detector;
- TPCs Gaseous-Argon Time Projection Chambers;
- FGDs Fine Grained plastic-scintillator Detectors;
- ECAL Electromagnetic Calorimeter;
- SMRD Side Muon Range Detector, scintillator plates inside magnet yokes

Analysis strategy

- Events in TPC gas considered. Significantly reduced background from light neutrino interactions.
- Source of HNLs (N): meson $(M^{\pm} = K^{\pm}, \pi^{\pm})$ decays: $M^{\pm} \rightarrow l_{\alpha}^{\pm} N (\alpha = \mu, e)$

•
$$v_{\alpha} = \sum_{i=1}^{3} V_{\alpha i}^{PMNS} v_i + \sum_{I=1}^{n} \Theta_{\alpha I} N_I \ (\alpha = e, \mu, \tau)$$

- $M^{\pm} \to l_{\alpha}^{\pm} N_I$, $BR \sim |\Theta_{\alpha I}|^2$, HNL decays: e.g. $N_I \to l_{\beta}^{\pm} \pi^{\mp}$, $BR \sim |\Theta_{\beta I}|^2$
- Experiment is sensitive to $U_{\alpha}^{2}U_{\beta}^{2}$, where $|U_{\alpha}|^{2} = \sum_{I=\{2,3\}} |\Theta_{\alpha I}|^{2}$
- Start from standard ν flux and apply event-by-event weighting, kinematics modification to account for HNL
- HNL decays simulated at random points along trajectories in TPCs
- Required 2 opposite charge tracks in TPC, further kinematic cuts: invariant mass, angle between 2 tracks, incoming HNL polar angle; veto activity in upstream detectors

Bars show allowed kinematic regions for each decay mode with the corresponding mixing element(s).

Statistical analysis

All HNL production and decay modes are considered simultaneously. For channel A the contribution of mode *i* is characterized by:

- expected number of decays Φ_i assuming $U_e^2 = U_{\mu}^2 = U_{\tau}^2 = 1$
- selection efficiency of decays in current channel, $\varepsilon_{A,i}$
- actual values of $U_{e,\mu,\tau}^2$ via the factor $f_i = U_{\alpha}^2 \sum U_{\beta_i}^2$ $\alpha, \beta_i \in \{e, \mu, \tau\}, \alpha$ – flavor in HNL production, β_i – flavors in HNL decay

Expected number of events N_A in channel A (with background B_A):

$$N_A = B_A + \sum_i \varepsilon_{A,i} \times f_i(U_e^2, U_\mu^2, U_\tau^2) \times \Phi_i$$

Bayesian approach. Likelihood for observed number of events n_A^{obs}

$$L = \prod_{A} Poisson(n_{A}^{obs}, N_{A})$$

PyMC Markov Chain method used for integration. 90% domains are defined by profiling/marginalizing over other mixing elements.

Results (of the original analysis [1])

> 350 $M_{\rm N} \, [{\rm MeV/c^2}]$

• Systematic uncertainties: signal flux prediction ($\approx 15\%$), detector systematics	$M_{N} [MeV/c^{2}]$	M _N [MeV
(example: TPC tracking, PID, angle resolution; overall effect $\approx 5\%$)	90% upper limits on mixing elements as a function of HNL mass.	10^{-3} T2K, marginalising
Background sources	<u>Blue dashed lines</u> – single-channel approach (one single HNL production and decay	
Dominant contribution is light ν interactions in TPC gas:	mode considered at a time) Blue solid lines after marginalization over	
$\nu_{\mu} + Ar \to \mu^- + \pi^+ + Ar$	other mixing elements.	
Two control samples to constrain background with data measurements:	Top left plot: <u>blue dotted line</u> – profiling used $(U_{\mu}^2 = U_{\tau}^2 = 0)$.	$10^{-6} = 90\% C.L.$
- Signal-like events with inverted kinematic cut on polar angle to constrain	Limits compared to PS191 [3], E949 [4], CHARM [5] Results still competitive [6]	150 200 250 300 350 M _N [MeV/
	ern neur [5]. Results suit competitive [6]	
resonant pion production, quasi-elastic processes on argon;		
 resonant pion production, quasi-elastic processes on argon; Interactions in TPC dead material to constrain photon conversions; 	References	Acknowledgements
 resonant pion production, quasi-elastic processes on argon; Interactions in TPC dead material to constrain photon conversions; Background estimation done with the NEUT Monte-Carlo generator [2] 	References 1. Abe, Koji, et al. Physical Review D, 100.5 (2019): 052006 2. Hayato Y., et. al. The European Physical Journal Special Topics 230(24) 4469-4481	Acknowledgements This work was funded by grant RSF № 22-12-00358