The branching fractions measurements of $J/\psi\to\pi^+\pi^-\eta$ and $J/\psi\to K^+K^-\eta$ at KEDR

Kyshtymov Dmitry

Budker Institute of Nuclear Physics (BINP), Novosibirsk

Moscow International School of Physics 2024 (MISP 2024) 28.02-06.03

The outline

- The KEDR detector
- $\ \ \, \hbox{O The } J/\psi \to \pi^+\pi^-\eta \ \hbox{process}$
 - Idea of analysis
 - Selection criteria
 - Results
- - Selection criteria
 - Results
- Summary

The KEDR detector

The KEDR detector consists of:

- Vertex detector
- Drift chamber
- Aerogel counters
- Time of flight system
- LKr calorimeter
- Csl calorimeter
- Muon system

The $J/\psi \to \pi^+\pi^-\eta$ process

The $J/\psi \to \pi^+\pi^-\eta$ process

- The $J/\psi \to \pi^+\pi^-\eta$ process has been measured by BaBar using ISR method and BES-III
- The dominant mod is a $J/\psi \rightarrow \rho \eta$ process, that was measured in 1988 µ 1990 years at MARK-III and DM2 detectors

BES-III:
$$(3.78 \pm 0.68) \times 10^{-4}$$
PDG: $(3.8 \pm 0.7) \times 10^{-4}$ BaBar: $(4.2 \pm 0.8) \times 10^{-4}$ $J/\psi \to \pi^+\pi^-\eta$

 $\begin{array}{l} \text{MARK-III:} \ (1.93\pm0.13\pm0.29)\times10^{-4} \\ \text{DM2:} \ (1.94\pm0.17\pm0.29)\times10^{-4} \end{array}$

PDG:
$$(1.93 \pm 0.23) \times 10^{-4}$$

 $J/\psi \rightarrow \rho \eta$

 $\begin{array}{l} Br(\rho \rightarrow \pi^+\pi^-) \simeq 100\% \\ Br(\eta \rightarrow \gamma\gamma) = (39.36 \pm 0.18)\% \end{array}$

There is a significant interference with $J/\psi \rightarrow \omega\eta \text{ is expected} \\ Br(\omega \rightarrow \pi^+\pi^-) = (1.53^{+0.11}_{-0.13})\% \text{ is } \\ \text{small, but} \\ Br(J/\psi \rightarrow \omega\eta) = (1.74 \pm 0.20) \times 10^{-3} \\ \text{ is 10 times bigger} \\ 5 / 16$

Idea of analysis

$$\frac{d\sigma}{d\Gamma} = |a + be^{i\phi}|^2 = |a|^2 + |b|^2 + ab^*e^{-i\phi} + a^*be^{i\phi}$$

$$a = (p_{\pi^+} \times p_{\pi^-}) sin\theta_n \frac{m_\rho^2}{q^2 - m_\rho^2 + iq\Gamma_\rho(q^2)} \text{ - the decay amplitude}$$

$$\Gamma(q^2) = \Gamma\left(\frac{p_{\pi(q^2)}}{p_{\pi(m_\rho^2)}}\right)^3 \left(\frac{m_\rho^2}{q^2}\right) \text{ - the decay width}$$

$$\begin{split} ab^*e^{-i\phi} + a^*be^{i\phi} &= \frac{2(p_{\pi +} \times p_{\pi -})^2 sin^2 \theta_n m_\rho^2 m_\omega^2 (q^4 + m_\rho^2 m_\omega^2 + q^2 \Gamma_\rho \Gamma_\omega}{((q^2 - m_\rho^2)^2 + q^2 \Gamma_\rho^2)(((q^2 - m_\omega^2)^2 + q^2 \Gamma_\omega^2)} cos\phi \\ &\quad - \frac{2(p_{\pi +} \times p_{\pi -})^2 sin^2 \theta_n m_\rho^2 m_\omega^2 q^2 (m_\rho^2 + m_\omega^2)}{((q^2 - m_\rho^2)^2 + q^2 \Gamma_\rho^2)(((q^2 - m_\omega^2)^2 + q^2 \Gamma_\omega^2)} so\phi \\ &\quad + \frac{2(p_{\pi +} \times p_{\pi -})^2 sin^2 \theta_n m_\rho^2 m_\omega^2 (q^3 \Gamma_\omega + q \Gamma_\rho m_\omega^2)}{((q^2 - m_\rho^2)^2 + q^2 \Gamma_\rho^2)(((q^2 - m_\omega^2)^2 + q^2 \Gamma_\omega^2)} sin\phi \\ &\quad - \frac{2(p_{\pi +} \times p_{\pi -})^2 sin^2 \theta_n m_\rho^2 m_\omega^2 (q^3 \Gamma_\rho + q \Gamma_\omega m_\rho^2)}{((q^2 - m_\rho^2)^2 + q^2 \Gamma_\rho^2)(((q^2 - m_\omega^2)^2 + q^2 \Gamma_\omega^2)} sin\phi \\ &\quad N_{theor} = N_\rho \varepsilon_\rho H_\rho + N_\omega \varepsilon_\omega H_\omega + \\ &\quad + \sqrt{N_\rho N_\omega} (\varepsilon_{cos} + H_{cos} + - \varepsilon_{cos} - H_{cos} -) cos(\phi) \\ &\quad + \sqrt{N_\rho N_\omega} (\varepsilon_{sin} + H_{sin} + - \varepsilon_{sin} - H_{sin_-}) sin(\phi) \end{split}$$

6/16

The selection was carried out using the likelihood function L: $L=-2\sum(N_{th}-N_{exp}+N_{exp}ln(N_{exp}/N_{th}))$

• $\chi^2 < 70$

2
$$\chi^2 < \chi^2_{K^+K^-\eta}$$

- Solution (E_{γ1} < 1300) ∩(E_{γ2} > 200) − limit on the photons energy for cutting out the background from γf₀ and ρπ
- () $\cos(\theta_{\gamma\gamma}) > 0.2$ limit on the angle between photons
- § $520 < M_{\gamma\gamma} < 580$ limit on the η meson invariant mass
- ${\it O}\ -0.4 < \cos(\theta_{\pi^+\pi^-}) < 0.75 {\rm limit}$ on the angle between pions

Efficiencies: $\varepsilon_{ ho} = 14.24 \pm 0.05\%$, $\varepsilon_{\omega} = 14.82 \pm 0.05\%$

Results

The two pion invariant mass fit with interference ($\chi^2/Ndf = 15/25$), 15 MeV per bin, $\phi = (90.8 \pm 3.3 \pm 11.0)^o$ 8/16

Results

10/16

Result for $Br(J/\psi \to \pi^+\pi^-\eta)$

 $Br(J/\psi \to \pi^+\pi^-\eta) = (3.77 \pm 0.54 \pm 0.34) \times 10^{-4} (N_{\pi^+\pi^-\eta} \approx 78)$

The $J/\psi \to K^+ K^- \eta$ process

The selection was carried out using the likelihood function L: $L = -2\sum(N_{th} - N_{exp} + N_{exp}ln(N_{exp}/N_{th}))$

Efficiency —
$$arepsilon_{\phi\eta} = (7.62 \pm 0.08)\%$$

Results

The two photons recoil invariant mass fit ($\chi^2/Ndf=9/12$), 4 MeV per bin

14/16

Result for $Br(J/\psi \to K^+K^-\eta)$

$$Br(J/\psi \to \phi\eta) = (6.93 \pm 1.25 \pm 0.40) \times 10^{-4} (N_{\phi} = 49)$$

$$Br(J/\psi \to K^{+}K^{-}\eta) = (3.40 \pm 1.25 \pm 0.40) \times 10^{-4}$$

Summary

- The branching measurement accuracy for $J/\psi\to\pi^+\pi^-\eta$ and $J/\psi\to\phi\eta$ is comparable to previous measurements
- Branching for the processes $J/\psi\to\rho\eta$ have a large uncertainties and is in poor agreement with previous measurements

Measurment results:

$$\begin{aligned} Br(J/\psi \to \rho\eta) &= (3.41 \pm 0.53 \pm 0.33) \times 10^{-4} \\ Br(J/\psi \to \pi^+\pi^-\eta) &= (3.77 \pm 0.54 \pm 0.34) \times 10^{-4} \\ Br(J/\psi \to \phi\eta) &= (6.93 \pm 1.25 \pm 0.39) \times 10^{-4} \\ Br(J/\psi \to K^+K^-\eta) &= (3.40 \pm 1.25 \pm 0.39) \times 10^{-4} \end{aligned}$$

Thank you for your attention!

Back Up

Result for $Br(J/\psi \to \rho \eta)$

 $Br(J/\psi \to \rho \eta) = (3.41 \pm 0.53 \pm 0.33) \times 10^{-4} (N_{\rho} \approx 88)$

The result comparisons for $Br(J/\psi \rightarrow \rho \eta) \times 10^4$

Results for $\pi^+\pi^-\eta$

Pion invariant mass up to 1.6 GeV

Results for $\pi^+\pi^-\eta$

Pion invariant mass when $M_{\gamma\gamma}$ fixed at M_η

Contribution from $\rho\pi$

Photons energies. Experiment

Photons energies. Simulation $\rho\pi$

Cosine between two photons

Results for $\pi^+\pi^-\eta$

Example of $\pi^+\pi^-\eta$ reconstruction in the detector

$\begin{array}{l} {\sf Efficiencies:} \\ \varepsilon_{\rho} = 14.24 \pm 0.05\% \ \varepsilon_{\omega} = 14.82 \pm 0.05\% \\ \varepsilon_{\cos^+} = 14.88 \pm 0.05\% \ \varepsilon_{\cos^-} = 14.85 \pm 0.05\% \\ \varepsilon_{\sin^+} = 14.68 \pm 0.05\% \ \varepsilon_{\sin^-} = 14.89 \pm 0.05\% \end{array}$

Results for fixed $Br(J/\psi \rightarrow \omega \eta) = 2.352 \times 10^{-3} \mbox{ from}$ BES-II result:

1
$$Br(J/\psi \to \rho \eta) = (3.41 \pm 0.53 \pm 0.33) \times 10^{-4}$$

2 $Br(J/\psi \to \omega \eta) = 2.352 \times 10^{-3} fixed$

2
$$Br(J/\psi \rightarrow \omega \eta) = 2.352 \times 10^{-3} fixed$$

$$\phi = (90.8 \pm 3.3 \pm 11.0)^{o}$$

•
$$\Delta M = (62.8 \pm 12.6 \pm 48.0)$$
 M₃B

The systematic uncertainties in $Br(J/\psi \rightarrow \pi^+\pi^-\eta)$, selection criteria

Cut	Var.	$\Delta N/N$,%	Unsert.,%
$\chi^2 < 70$	$\chi^{2} < 110$	7	3.77
$\chi^2 < \chi^2_{K^+K^-\eta}$	_	28	2.06
$E_{\gamma_1} < 1300; E_{\gamma_2} > 200$	—	12	0.43
$\cos(\theta_{\gamma\gamma}) > 0.2$	—	2	4.00
$520 < M_{\gamma\gamma} < 580$	$480 < M_{\gamma\gamma} < 620$	24	5.45
$-0.4 < \cos(\theta_{\pi^+\pi^-}) < 0.75$	-	6	1.23
Sum	—	—	8.12

Source	Unsert., %
Track reconstruction	0.5
η reconstruction	0.2
p/ heta resolution	0.5
Nuclear interaction	0.4
Sum	0.8

Source	Unsert, %
Fit var.	0.77
Efficiency	0.77
$Br(J/\psi \to \omega \eta)$	3.31

Source	Unsert., %
$\Gamma \rho$	0.024
$\dot{M}\rho$	0.44
Γ_{ω}	0.44
M_{ω}	0.43
Sum	0.76

Source	Unsert., %
$K^+K^-\eta$	0.53
$K_s K_l \eta$	0.12
$K_s K^* \bigcap K_s \overline{K^*}$	1.40
ρπ	0.70
$\rho'\pi$	0.78
$\gamma f_0(500)$	0.36
$\gamma f_2(1270)$	0.64
$\pi^+\pi^-\pi_0\eta$	0.87
Sum	2.16

16/16

Results

16/16

•
$$Br(J/\psi \to \phi \eta) = (6.93 \pm 1.25 \pm 0.40) \times 10^{-4} (N_{\phi} = 49)$$

• $\Delta M = (2.07 \pm 1.04 \pm 0.57) \text{ MeV}$

Belle:
$$(7.1 \pm 1.0 \pm 0.5) \times 10^{-4}$$
 ($N_{\phi\eta} \approx 99$, 2023)
BES: $(8.99 \pm 0.18 \pm 0.89) \times 10^{-4}$ (2005)
DM2: $(6.4 \pm 0.4 \pm 1.1) \times 10^{-4}$ ($N_{\phi\eta} \approx 346$, 1990)
MARK-III: $(6.61 \pm 0.45 \pm 0.78) \times 10^{-4}$ (1988)
PDG: $(7.4 \pm 0.6) \times 10^{-4}$
 $J/\psi \to \phi\eta$

The systematic uncertainties in $Br(J/\psi \rightarrow K^+K^-\eta)$, selection criteria

Cut	Used.	Var.	$\Delta N/N$,%	Unsert.,%
χ^2	$\chi^2 <$ 70	$\chi^2 < 100$	17	2.5
$\chi^2_{\pi^+\pi^-\eta}$	$\chi^2 < \chi^2_{\pi^+\pi^-\eta}$	-	3	2.5
$E_{K^{+-}}$	${\sf E}_{K^{+-}} < 10$	$E_{K^{+-}} < 20$	20	1.3
M_{η}	450< <i>M</i> _{\eta} <650	$M_{\eta} < 700$	5	3.4
Sum	-	-	-	5.1

Source	Unsert., %
Track Reconstruction	0.5
η reconstruction	0.2
p/ heta resolution	0.5
Nuclear interaction	0.4
Sum	0.8

Source	Unsert., %
Γ_{ϕ}	0.44
M_{ϕ}	0.43
Sum	0.62

Source	Unsert., %
Fit var.	0.03
Efficiency	0.9

Source	Unsert., %
$\pi^+\pi^-\eta$	0.20
$K_s K^* \bigcap K_s \overline{K^*}$	1.36
$\rho\pi$	1.11
$\pi^+\pi^-\pi_0\eta$	0.82
Sum	1.95

Drift chamber:

- Inner radius: 125 mm
- Outer radius: 535 mm
- Length: 1100 мм
- Amount of axial superlayers: 4
- Amount of stereo superlayers: 3
- Amount of measurements: 42
- Amount of cells: 252
- Spatial resolution: 150 мкм
- dE/dx: 8.2%

Csl calorimeter:

- Polar angle: (6 38) degrees
- Thickness: 30 cm (15 X₀)
- Energy resolution for 0.1 GeV: 3%
- Energy resolution for 1 GeV: 2.5%
- Angle resolution for 0.1 GeV: 18 mrad
- Angle resolution for 1 GeV: 9 mrad

LKr calorimeter:

- Polar angle: (38 142) degrees
- Inner radius: 75 cm
- Thickness: 68 cm (14.8 X₀)
- Energy resolution for 0.1 GeV: 6%
- Energy resolution for 1 GeV: 2.5%
- Angle resolution for 0.1 GeV: 4 mrad
- Angle resolution for 1 GeV: 4 mrad

Physical backgrounds

 $Br(\pi^+\pi^-\eta) = (3.8 \pm 0.8) \times 10^{-4}$ $Br(\rho\eta) = (1.93 \pm 0.23) \times 10^{-4}$ $Br(\omega\eta) = (1.74 \pm 0.2) \times 10^{-3}$ $Br(\rho\pi) = (1.69 \pm 0.15) \times 10^{-2}$ $Br(\phi\eta) = (7.4 \pm 0.8) \times 10^{-4}$ $Br(\rho(1450)\pi \to 3\pi) = (2.3 \pm 0.7) \times 10^{-3}$ $Br(\pi^+\pi^-\pi_0\eta) = (1.17\pm0.2)\times10^{-2}$ $Br(\omega\pi_0) = (4.5 \pm 0.5) \times 10^{-3}$ $Br(\omega\pi_0\pi_0) = (3.4\pm0.8)\times10^{-3}$ $Br(\omega\eta\pi_0) = (3.4 \pm 1.7) \times 10^{-4}$ $Br(\rho(1450)\eta' \to 2\pi\eta') = (3.3 \pm 0.7) \times 10^{-6}$

 $Br(\rho \to \pi^+\pi^-) \approx 100\%$ $Br(\omega \to \pi^+\pi^-) =$ $(1.53 \pm 0.13) \times 10^{-2}$ $Br(\eta \to \gamma \gamma) =$ $(39.36 \pm 0.18) \times 10^{-2}$ $Br(\pi_0 \to \gamma \gamma) =$ $(98.823 \pm 0.034) \times 10^{-2}$ $Br(\phi \rightarrow K^+K^-) =$ $(49.1 \pm 0.5) \times 10^{-2}$ $Br(\eta' \to \gamma \gamma) =$ $(2.307 \pm 0.033) \times 10^{-2}$

SND (Novosibirsk) and BES-III (China)

Achasov, M. N., et al. "Measurement of the $e^+e^- \rightarrow \pi^+\pi^-$ process cross section with the SND detector at the VEPP-2000 collider in the energy region 0.525< \sqrt{s} < 0.883 GeV." Journal of High Energy Physics 2021.1 (2021): 1-24.

Ablikim, M., et al. "Measurement of the phase between strong and electromagnetic amplitudes of J/ψ decays. "Physics Letters B 791 (2019): 375-384

16/16

The MARK-III old work

Fit 1	Fit 2	_
$N_{\omega} = 5.0 \pm 2.4$	$N_{\omega} = 8.9$, fixed	
$N_{\rho^0} = 58.5 \pm 7.4$	$N_{\rho^0} = 49.5 \pm 6.3$	
$\phi = 0.4 \pm 0.5$	$\phi = 0.4 \pm 0.5$	_

$$\begin{split} N_T = & N_{\rho^0} + N_{\omega} + 2 \left[\frac{\Gamma_{\omega}}{\Gamma_{\rho}} N_{\rho^0} N_{\omega} \right]^{1/2} \cos\phi \\ = & N_{\rho^0} + N_{\omega} + 0.507 (N_{\rho^0} N_{\omega})^{1/2} \cos\phi \; . \end{split}$$

MARK-III and DM2

