The scaling limit of the XXZ spin chain and integrable structures in CFT Moscow International School of Physics

Ivan Gusev Alexey Litvinov

March 4, 2024

Presentation Plan

Introduction

- Research Problem
- Goals and objectives
- Methods

Results

Introduction

Integrable models

- 1. Integrable CFT with \mathcal{Z}_r symmetry and BLZ approach
- CFT with \$I(n) symmetry and auxiliary non-interacting bosonic field

Introduction Spin- $\frac{1}{2}$ chain with \mathcal{Z}_r symmetry

Introduction

Commuting family

• Hamiltonian: $\ell = 1, \ldots, r$

$$\mathbb{H}^{(\ell)} = 2\mathrm{i}\zeta\partial_{\zeta}\log(\mathbb{T}(-q^{-1}\zeta))|_{\zeta=\eta_{\ell}} - 2\mathrm{i}\sum_{J=1}^{N}(1-q^{2}\eta_{J}/\eta_{\ell})^{-1}$$

Operators T, Ⅲ, ℚ, S^z, etc.
1. act in the "quantum space" 𝒴_N = C²_N ⊗ C²_{N-1} ⊗ · · · ⊗ C²₁

2. belong to commuting family

Research Problem

The key problem of this project is the solution of non-linear Bethe ansatz equations (BAE) in the scaling limit:

$$\prod_{J=1}^{N} \frac{\eta_J + q\zeta_m}{\eta_J + q^{-1}\zeta_m} = -e^{2\pi i k} q^{2S^z} \prod_{j=1}^{M} \frac{\zeta_j - q^2\zeta_m}{\zeta_j - q^{-2}\zeta_m}$$
$$m = 1, 2, \dots, M, \quad S^z = \frac{1}{2}N - M \ge 0$$

The parameter $q = e^{i\gamma}$ is called anisotropy, and the set of complex numbers $\{\eta_J\}_{J=1}^N$ with the periodic condition $\eta_{J+r} = \eta_J$ are the inhomogeneities.

- Construct the Hamiltonian spectrum of an inhomogeneous six-vertex model with Z_r-symmetry
- Describe ground and low-energy excited states

Methods

- 1. Constructed and diagonalized large sparse $\mathbb H$ and $\mathbb Q$ matrices via Wolfram Mathematica and Python
- 2. Solved invariant Bethe Ansatz Equations for a small lattice size $N \sim 20$
- Using the Bethe ansatz equations, extended the RG trajectory of eigenstates up to N ≫ 1 without explicit construction/diagonalization II and Q
- 4. Perturb BAE and find a new solution near the invariant one

$\begin{array}{l} \mbox{Results} \\ \mbox{Spin-}\frac{1}{2} \mbox{ chain with } \mathcal{Z}_1 \mbox{ symmetry} \end{array}$

Figure 1: Distribution of roots of the XXZ chain at N = 90, $k = \frac{1}{10}$, $S^z = 0$, L = 2, $\overline{L} = 0$, w = 1, $\beta^2 = 2/5$

$\begin{array}{l} \mbox{Results} \\ \mbox{Spin-}\frac{1}{2} \mbox{ chain with } \mathcal{Z}_1 \mbox{ symmetry} \end{array}$

Figure 2: Reduced energy values $\frac{N}{2\pi v_F}(\mathcal{E} - \mathcal{E}_0)$ for the state L = 2

$\begin{array}{l} \mbox{Results} \\ \mbox{Spin-}\frac{1}{2} \mbox{ chain with } \mathcal{Z}_2 \mbox{ symmetry} \end{array}$

Figure 3: The parameters taken for the figure $S^z = 0$, $\gamma = \frac{143}{200}$, $\eta_1 = \eta_2^{-1} = e^{\frac{13i}{10}}$, $k = \frac{1}{10}$

$\begin{array}{l} Results \\ {\sf Spin}_{\frac{1}{2}} \text{ chain with } \mathcal{Z}_3 \text{ symmetry} \end{array}$

Figure 4: The parameters taken for the figure $S^z = 0$, $\gamma = \frac{\pi}{5}$, $\eta_1 = e^{-\frac{2\pi i}{3}}$, $\eta_2 = e^{\frac{2\pi i}{3}\epsilon}$, $\eta_3 = e^{\frac{2\pi i}{3}(1-\epsilon)}$, $\epsilon = \frac{1}{10}$, $k = \frac{1}{20}$

Thank you for attention!

