The scaling limit of the $X X Z$ spin chain and integrable structures in CFT
 Moscow International School of Physics

Ivan Gusev
Alexey Litvinov

March 4, 2024

Presentation Plan

- Introduction
- Research Problem
- Goals and objectives
- Methods
- Results

Introduction

Integrable models

1. Integrable CFT with \mathcal{Z}_{r} symmetry and BLZ approach
2. CFT with $\mathfrak{S l}(n)$ symmetry and auxiliary non-interacting bosonic field

Introduction

Spin- $\frac{1}{2}$ chain with \mathcal{Z}_{r} symmetry

Transfer matrix $(\mathbb{T}(\zeta)){ }_{a_{N} a_{N-1} \ldots a_{2} a_{1}}^{b_{N} b_{N-1} \ldots b_{2} b_{1}}$

Introduction

Commuting family

- Hamiltonian: $\ell=1, \ldots, r$

$$
\mathbb{H}^{(\ell)}=\left.2 \mathrm{i} \zeta \partial_{\zeta} \log \left(\mathbb{T}\left(-q^{-1} \zeta\right)\right)\right|_{\zeta=\eta_{\ell}}-2 \mathrm{i} \sum_{J=1}^{N}\left(1-q^{2} \eta_{J} / \eta_{\ell}\right)^{-1}
$$

- Operators $\mathbb{T}, \mathbb{H}, \mathbb{Q}, \mathbb{S}^{z}$, etc.

1. act in the "quantum space" $\mathscr{V}_{N}=\mathbb{C}_{N}^{2} \otimes \mathbb{C}_{N-1}^{2} \otimes \cdots \otimes \mathbb{C}_{1}^{2}$
2. belong to commuting family

Research Problem

The key problem of this project is the solution of non-linear Bethe ansatz equations (BAE) in the scaling limit:

$$
\begin{gathered}
\prod_{J=1}^{N} \frac{\eta_{J}+q \zeta_{m}}{\eta_{J}+q^{-1} \zeta_{m}}=-\mathrm{e}^{2 \pi \mathrm{ik}} q^{2 S^{z}} \prod_{j=1}^{M} \frac{\zeta_{j}-q^{2} \zeta_{m}}{\zeta_{j}-q^{-2} \zeta_{m}} \\
m=1,2, \ldots, M, \quad S^{z}=\frac{1}{2} N-M \geq 0
\end{gathered}
$$

The parameter $q=\mathrm{e}^{i \gamma}$ is called anisotropy, and the set of complex numbers $\left\{\eta_{J}\right\}_{J=1}^{N}$ with the periodic condition $\eta_{J+r}=\eta_{J}$ are the inhomogeneities.

Goals and objectives

- Construct the Hamiltonian spectrum of an inhomogeneous six-vertex model with \mathcal{Z}_{r}-symmetry
- Describe ground and low-energy excited states

Methods

1. Constructed and diagonalized large sparse \mathbb{H} and \mathbb{Q} matrices via Wolfram Mathematica and Python
2. Solved invariant Bethe Ansatz Equations for a small lattice size $N \sim 20$
3. Using the Bethe ansatz equations, extended the RG trajectory of eigenstates up to $N \gg 1$ without explicit construction/diagonalization \mathbb{H} and \mathbb{Q}
4. Perturb BAE and find a new solution near the invariant one

Results

Spin- $\frac{1}{2}$ chain with \mathcal{Z}_{1} symmetry

Figure 1: Distribution of roots of the XXZ chain at $N=90, k=\frac{1}{10}$, $S^{z}=0, L=2, \bar{L}=0, w=1, \beta^{2}=2 / 5$

Results

Spin- $\frac{1}{2}$ chain with \mathcal{Z}_{1} symmetry

Figure 2: Reduced energy values
$\frac{N}{2 \pi v_{F}}\left(\mathcal{E}-\mathcal{E}_{0}\right)$ for the state $L=2$

Results

Spin- $\frac{1}{2}$ chain with \mathcal{Z}_{2} symmetry

Figure 3: The parameters taken for the figure $S^{z}=0, \gamma=\frac{143}{200}$, $\eta_{1}=\eta_{2}^{-1}=\mathrm{e}^{\frac{13 i}{10}}, \mathrm{k}=\frac{1}{10}$

Results

Spin- $\frac{1}{2}$ chain with \mathcal{Z}_{3} symmetry

Figure 4: The parameters taken for the figure $S^{z}=0, \gamma=\frac{\pi}{5}, \eta_{1}=\mathrm{e}^{-\frac{2 \pi i}{3}}$, $\eta_{2}=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{3} \epsilon}, \eta_{3}=\mathrm{e}^{\frac{2 \pi \mathrm{i}}{3}(1-\epsilon)}, \epsilon=\frac{1}{10}, \mathrm{k}=\frac{1}{20}$

Thank you for attention!

