Early universe phase transitions within holographic composite Higgs model

Andrey Shavrin

under the supervision of Prof. Oleg Novikov
Saint-Petersburg State University, Th. Phys. Dep.

Moscow International School on Particle Physics HSE Study Center "Voronovo", Moscow

AdS/CFT correspondence

Perturbation theory

$$
\begin{gathered}
\langle\phi \ldots \phi\rangle=\left\langle\phi_{0} \ldots \phi_{0}\right\rangle+\lambda\left\langle\phi_{1} \ldots \phi_{1}\right\rangle+\lambda^{2}\left\langle\phi_{2} \ldots \phi_{2}\right\rangle+\ldots+\text { non-analytical?+solitons? } \\
\text { QFT } \xrightarrow{\text { renormalization }} \text { CFT }
\end{gathered}
$$

AdS/CFT correspondence

$$
\begin{aligned}
& \text { CFT } \stackrel{\text { AdS/CFT }}{\rightleftarrows} \text { dual theory } \\
& \left.\mathcal{Z}_{\text {CFT }}[J] \underset{\text { correspondence }}{\stackrel{\text { AdS } / \text { CFT }}{ }} \mathcal{Z}_{\text {AdS }} \xlongequal[\text { quasiclassical }]{\text { approximation }} e^{-S_{\text {AdS }}}\right|_{\partial \text { AdS }} \\
& \text { strong coupled } \lambda_{\text {CFT }} \gg 1 \text { with } \lambda_{\text {CFT }} \sim \frac{1}{\lambda_{\text {AdS }}} \\
& \text { dual theory } \lambda_{\text {AdS }} \ll 1 \text { weak coupled }
\end{aligned}
$$

Correlators within AdS/CFT

$$
\text { Solutions of EoM: } \frac{\delta S_{\mathrm{AdS}}[\psi]}{\delta \psi}=0
$$

Near the conformal boundary: $\quad \psi(x, z) \xrightarrow[z \rightarrow 0]{\text { OAdS }} z^{d-\Delta} \psi_{0}(x)+z^{\Delta} \psi_{1}(x)$
CFT sources: $\quad J \sim \psi_{0}(x)$ with weight $d-\Delta$

$$
\begin{gathered}
\text { Solutions: }\left.\Rightarrow \mathcal{Z}_{\text {AdS }}\right|_{\partial \text { AdS }}\left[\psi_{0}\right]=\mathcal{Z}_{\mathrm{CFT}}[J]=\int \mathcal{D}\left[{ }^{\star} \text { fields of } \mathrm{CFT}^{*}\right] e^{-S_{\mathrm{CFT}}-\mathcal{O} \cdot J} \\
G_{n}=\langle\mathcal{O} \ldots \mathcal{O}\rangle=\left.\left(\frac{\delta}{\delta J}\right)^{n} \log \mathcal{Z}[J]\right|_{J=0}=-\left(\frac{\delta}{\delta \psi_{0}}\right)^{n} S_{\text {AdS }}[\psi]=\underbrace{-\left(\frac{\delta^{n} S_{\mathrm{AdS}}^{\text {bulk }}}{\delta \psi_{0}^{n}}\right)}_{=0 \text { due to EoM }}-\left(\frac{\delta^{n} S_{\partial \mathrm{AdS}}^{\text {border }}}{\delta \psi_{0}^{n}}\right)
\end{gathered}
$$

The price

AdS/CFT correspondence is a hypothesis in general sense.
Exact dualities: \quad scalar theory / same in $\mathrm{AdS}_{5} \quad \mathcal{N}=4 \mathrm{SYM} /$ type IIB $\mathrm{AdS}_{5} \times S^{5}$
wanted CFT \Rightarrow Formulated FT in AdS (low energy limit of ST)

$$
\left.\mathcal{Z}_{\text {AdS }}\right|_{\partial \mathrm{AdS}}=\int \mathcal{D}[\boldsymbol{? ? ?}] e^{\boldsymbol{?} ? \boldsymbol{?} \boldsymbol{?}} e^{-\mathcal{O} \cdot J}
$$

Fields of CFT are unknown, action is unknown, but we know something (symmetries) about the sources J and the operators \mathcal{O}

$$
\mathcal{O} \in \mathbb{C}\left[\phi, \partial \phi, \partial^{2} \phi, \ldots\right]
$$

Electroweak baryogenesis (Motivation)

Baryon asymmetry problem - matter more than anti-matter
Sakharov's conditions \Leftrightarrow first order phase transition (i.e. CPT-violation)
unbroken symmetry

$$
\langle\phi\rangle=0
$$

$$
\mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}} \rightarrow \mathrm{U}(1)_{\mathrm{em}} \quad \text { is a crossover (not a PT); BSM physics? }
$$

Composite Higgs model

$$
\left.\begin{array}{c}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{CH}}+\mathcal{L}_{\text {Int }}, \quad \mathcal{L}_{\mathrm{CH}} \text { - strongly coupled with } \mathcal{G} \text { inner symmetry } \\
\left(\mathcal{G}_{\text {invariant }}^{\text {vacuum }}\right.
\end{array}\right) \xrightarrow[\text { breaking }]{\text { spontaneous }}\left(\begin{array}{c}
\left.\mathcal{H}_{\text {invariane }}^{\text {invaum }}\right)
\end{array}\right) \Rightarrow \begin{gathered}
\text { Goldstone bosons } \ni \text { Higgs boson } \\
\text { phase transition }
\end{gathered}
$$

$$
\Sigma_{I J}=\left\langle\bar{\Psi}_{I} \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \xrightarrow[\text { low energy }]{\mathrm{SO}(5) \rightarrow \mathrm{SO}(4)}\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right) \Rightarrow \underset{\text { breaking }}{\text { symmetry }}
$$

$\Sigma_{I J}$ is a condensate of the $S O(5)$-inn.sym. fundamental fields Ψ; ξ is NB-bosons, η is "radial" fluctuations, ς is background field

Holographic Model

Dual theory: $\quad S_{\text {AdS }}=S_{\text {grav. }+\phi}+S_{\mathrm{X}}+S_{\text {gauge }}+S_{\text {"SM" }}+S_{\text {int. "SM" }}+x \xrightarrow{\text { AdS } / \text { CFT }} S_{S M}+\mathrm{CH}$ S"SM" and $S_{\text {int. "SM" }+ \text { x }}$ shouldn't have a PT

Matter sector: $\quad S_{\mathrm{X}}=\frac{1}{k_{s}} \int d^{5} x \sqrt{|g|} e^{\phi}\left[\frac{1}{2} g^{a b} \operatorname{Tr}\left(\nabla_{a} X^{T} \nabla_{b} X\right)-V_{X}(X)\right]$

$$
\begin{gathered}
V_{X}(X)=\operatorname{Tr}\left(-\frac{3}{2 L^{2}} X^{\top} X-\frac{\alpha}{4}\left(X^{\top} X\right)^{2}+L^{2} \frac{\beta}{6}\left(X^{\top} X\right)^{3}+O\left(X^{8}\right)\right) \\
X_{I J} \propto \frac{\sqrt{N}}{2 \pi} J_{I J} Z+\frac{2 \pi}{\sqrt{N}} \Sigma_{I J} Z^{3}+\ldots, \quad J_{I J} \text { are sources for CH condensate } \Sigma_{I J}
\end{gathered}
$$

Phase transition

$\left.\begin{array}{|cccc|}\hline\langle\varphi\rangle & \text { — Minima } & \text { — Maxima } & \text { — Trivial minima } \\ \hline T & & \begin{array}{c}\text { non-trivial minima } \\ \text { becomes the true vacuum }\end{array} \\ \text { inflection } \\ \text { disappears }\end{array}\right]$

$$
\left.\frac{\partial V_{\mathrm{eff}}^{\mathrm{CH}}}{\partial\langle\varphi\rangle}\right|_{\langle\varphi\rangle_{0}}=0 \Rightarrow\left(\langle\varphi\rangle_{0},\left.V_{\mathrm{eff}}\right|_{\langle\varphi\rangle_{0}}\right)
$$

Effective potential extremal values and the positions allow one to judge about PT:
"= trivial minimum (vacuum) only \Rightarrow there is no PT;
En non-trivial true vacuum with the potential barrier \Rightarrow 1-st PT;
\#. non-trivial true vacuum without a potential barrier \Rightarrow there is no PT.

The extrema of the effective quantum potential $V_{\text {eff: }} T$ is the plasma temperature, $\langle\varphi\rangle$ is the vacuum expectation.

Bubble free energy

Free energy of a bubble: $\quad F\left[V_{\text {eff }}\right] \xlongequal[\text { approximation }]{\text { thin walls }} 4 \pi R^{2} \mu-\frac{3 \pi}{4} R^{3}\left(\mathcal{F}_{\text {out }}-\mathcal{F}_{\text {in }}\right)$

$$
F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right): \text { if } R>R_{\mathrm{C}}
$$

bubbles grow and PT occurs.

$$
\frac{\beta}{H *} \sim \frac{F_{C}}{T}+\mathcal{O}(T)
$$

$1 / \beta \sim$ appear \rightarrow collide time $1 / H_{*} \sim$ universe expansion

$$
\begin{aligned}
& v_{4} \sim 10^{-1} \ll 1, \quad C \sim 1 \\
& 10^{3} \gtrsim \frac{\beta}{H_{*}} \gtrsim 10^{5}
\end{aligned}
$$

$$
\begin{gathered}
0.28 \gtrsim \frac{T(\gamma)}{m}<\frac{T\left(\gamma_{\min }\right)}{m} \\
T \sim \frac{1}{\gamma}<\frac{1}{\gamma_{\text {min }}} \text { - suggestion, } \quad \gamma_{\text {min }} \ll 1
\end{gathered}
$$

Observations

Picks of the GW spectrum estimated within Holographic Composed Higgs model. There is only the scalar part produced during initial collisions of the bubble walls (i.e. sound and turbulence contributions are not currently included in the rough estimate.)

Large D limit

Dual theory: $\quad S_{\text {AdS }}=S_{\text {grav. }+\phi}+S_{\mathrm{X}}+S_{\text {gauge }}+S_{\text {"SM" }}+S_{\text {int. "SM" }}+\mathrm{X}$
S_{X} is considered (without fluctuations); $S_{\text {grav. }+\phi}$ and $S_{\text {gauge }}$ are left

$$
S_{\text {grav. }+\phi}=\frac{1}{l_{P}^{3}} \int d^{5} x \sqrt{|g|} e^{2 \phi}\left[-R+2|\Lambda|-4 g^{a b} \partial_{a} \phi \partial_{b} \phi-V_{\phi}(\phi)\right]
$$

$S_{\text {grav. }+\phi}$ within large D limit: $g_{a b}=g_{a b}^{(0)}+\frac{1}{D} g_{a b}^{(1)}+\frac{1}{D^{2}} g_{a b}^{(2)}+\ldots$
near- AdS_{d} (Poincaré patch): $A(z)=1+o\left(e^{D}\right), B(z)=1+o\left(e^{D}\right), f(z)=1-\left(\frac{z}{z_{H}}\right)^{D-1}+\mathcal{O}\left(e^{D}\right)$
$d s^{2}=A(z)\left(-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+B(z) \mathrm{d} \Omega_{D-2}\right) \xrightarrow{D \rightarrow \infty} \frac{l^{2}}{D^{2}}\left(-y^{2} d \tau^{2}+d y^{2}\right)+o\left(e^{-D}\right) \mathrm{d} \Omega_{D-2}$
The simplest case for dilaton in AdS $\quad \phi^{\prime \prime}-\left(\phi^{\prime}\right)^{2}+m^{2}\left(\phi^{2}+2 \phi\right)=0 \quad$ no Lie symmetries

Self-promotion

Thank you for the attention!

Effective field theory

$$
\begin{gathered}
\mathcal{Z}[J]=\int \mathcal{D} \phi e^{-S-J \cdot \phi}=: e^{W[J]} \\
\Gamma[\langle\phi\rangle]=W[J]-\frac{\delta W[J]}{\delta J} \cdot J=\int_{X} d^{d} x(\underbrace{K_{\text {eff }}[\partial\langle\phi\rangle]}_{=0 \text { if }\langle\phi\rangle=\text { const }}+V_{\text {eff }}[\langle\phi\rangle]) \quad \text { - effective action }
\end{gathered}
$$

Effective potential: $\quad V_{\text {eff }}=\frac{1}{\mathrm{Vol}_{4}} \Gamma$
Equation of motion (EOM): $\quad \frac{\delta \Gamma}{\delta\langle\phi\rangle}=J \xlongequal{\langle\phi\rangle=\text { const }} \frac{\delta V_{\text {eff }}}{\delta\langle\phi\rangle} \xlongequal{\mathrm{J=0}} 0$ gives extrema condition

Effective potential

Extrema condition: $\left.V_{\text {eff }}\right|_{\text {extrema }}=\left.V_{\text {eff }}\right|_{J=0} \Leftrightarrow G_{0}$;
AdS/CFT: $G_{0} \Leftarrow$ boundary term of dual theory $S_{\text {DAdS }}$

$$
\left.V_{0} l_{X} V_{\text {eff }}\right|_{\text {extrema }}=G_{0}=\left.W[J=0] \stackrel{\text { AdS } / \text { CFT }}{=} S_{\text {AdS }}\right|_{\partial A d S} ^{\psi_{0}=0}
$$

Extrema condition \& duality: $\quad J=\psi_{0}=0 ; \quad$ duality: $\quad\langle\phi\rangle=\psi_{1}$

$$
\left.\frac{\delta V_{\text {eff }}}{\delta\langle\phi\rangle} \xlongequal{\text { AdS } / \text { CFT }} \frac{\delta}{\delta \psi_{1}}\left(\left.S[\psi]\right|_{\partial \text { AdS }}\right)\right|_{\psi_{0}=0}=0 \quad\binom{\text { with assumption }}{\langle\phi\rangle=\text { const }}
$$

gives vacuum expectation values: $\left\{\langle\phi\rangle_{\min 1},\langle\phi\rangle_{\min 2}, \ldots\right\}$ - possible vacuums

Extrema positions and values $\left\{\left(\langle\phi\rangle_{\min \mathrm{i}}, V_{\text {eff }}\left[\langle\phi\rangle_{\text {min } i}\right]\right)\right\} \Rightarrow$ phase transitions

Holographic effective potential

$$
\begin{gathered}
\mathcal{Z}_{\mathrm{CH}}[J]=\int \mathcal{D} \varphi \exp \left(-S[\varphi]-\int d^{4} x \varphi(x) J(x)\right) \stackrel{\text { def }}{=} e^{-W[J]} \\
\langle\varphi\rangle=\left.\frac{\delta W[J]}{\delta J}\right|_{J=0}, \Gamma[\langle\varphi\rangle]=W[J]-\int d^{4} x \frac{\delta W[J]}{\delta J(x)} J(x)-\text { Effective Action }
\end{gathered}
$$

$$
\text { EoM: } \frac{\delta \Gamma}{\delta\langle\varphi\rangle}=J
$$

$\begin{gathered}\text { Homogeneus } \\ \text { Solution }\end{gathered} \Rightarrow\langle\varphi\rangle=$ const $_{\mathbb{R}^{1,3}} \Rightarrow \Gamma=-\mathrm{Vol}_{4} V_{\text {eff }}-\begin{aligned} & \text { Effective } \\ & \text { Potential }\end{aligned}$
extrema condition

$$
\mathcal{Z}[J] \underset{\text { correspondence }}{\left.\stackrel{\text { AdS } / \mathrm{CFT}}{\mathcal{Z}_{\text {AdS }}} \xlongequal[\text { approximation }]{\text { quasiclassical }} e^{-S_{\text {AdS }}}\right|_{\partial A d S}-\begin{array}{c}
\text { quasiclassical } \\
\text { non-perturbative }
\end{array}}
$$

$$
V_{\text {eff }}=-\left.\frac{1}{\mathrm{Vol}_{4}} S_{\mathrm{AdS}}\right|_{\partial \mathrm{AdS}}-\quad-\begin{gathered}
\text { boundary term of the bulk theory } \\
\text { defines quantum effective potential }
\end{gathered}
$$

Holographic model

$\mathcal{L}_{\mathrm{CH}}$ - strongly coupled $\quad \Rightarrow \quad$ consider $N \gg 1 \quad \Rightarrow \quad \mathcal{Z}_{\mathrm{CH}}[\mathrm{J}]=\mathcal{Z}_{\mathrm{AdS}}[\mathrm{J}]$
The dual theory: $\mathcal{Z}_{\text {AdS }}[J] \sim \exp \left(-S_{\text {AdS }}[J]\right)$ is weakly coupled \Rightarrow quasiclassical limit
The asymptotic behavior near the conformal border $\partial \mathrm{AdS}$ of the dual theory fields defines the sources of the CH operators (i.e. the correlator functions)

$$
x_{I J} \stackrel{z \rightarrow 0}{ } \frac{\sqrt{N}}{2 \pi} J_{I J} z+\frac{2 \pi}{\sqrt{N}} \Sigma_{I J} z^{3}+\ldots \quad X_{I J}: A d S_{5} \stackrel{\text { dual }}{\Longleftrightarrow} \Sigma_{I J}: \mathbb{R}^{1,3}
$$

Holography is the duality between strongly coupled theory on the border and weakly coupled (quasiclassical) bulk theory.
$F=-T \log \mathcal{Z}_{\mathrm{CH}} \sim T S_{\text {AdS }} \propto \operatorname{Vol}_{4} \cdot \mathcal{F} \quad$ In homogeneous case $(\chi=\chi(z)): \mathcal{F} \propto V_{\text {eff }}[\chi]$

Action of the holographic model

$$
\begin{gathered}
S_{\text {tot }}=S_{\text {grav }+\phi}+S_{X}+S_{\mathrm{A}}+S_{\mathrm{SM}}+S_{\text {int }}, \quad S_{\mathrm{A}}=-\frac{1}{g_{5}^{2}} \int d^{5} x \sqrt{|g| e^{\phi} g^{a c} g^{b d} F_{a b} F_{c d}} \\
S_{\text {grav }+\phi}=\frac{1}{l_{P}^{3}} \int d^{5} x \sqrt{|g| e^{2 \phi}}\left[-R+2|\Lambda|-4 g^{a b} \partial_{a} \phi \partial_{b} \phi-V_{\phi}(\phi)\right], \quad a, b=0, \ldots 4 \\
S_{\text {int }}=\epsilon^{4} \int_{z=\epsilon} d^{4} x \sqrt{\mid g^{(4) \mid}}\left[c_{Y} B_{\mu} \operatorname{Tr}\left(T_{Y} A^{\mu}\right)+c_{W} W_{k, \mu} \operatorname{Tr}\left(T_{k} \mu^{\mu}\right)+\mathcal{L}_{\psi}\right] \\
S_{X}=\frac{1}{k_{\mathrm{s}}} \int d^{5} x \sqrt{|g| e^{\phi}}\left[\frac{1}{2} g^{a b} \operatorname{Tr}\left(\nabla_{a} X^{\top} \nabla_{b} X\right)-V_{X}(X)\right], \quad \nabla_{a} X=\partial_{a} X+\left[A_{a}, X\right], \quad A_{a}=0 \\
V_{X}(X)=\operatorname{Tr}\left(-\frac{3}{2 L^{2}} X^{\top} X-\frac{\alpha}{4}\left(X^{\top} X\right)^{2}+L^{2} \frac{\beta}{6}\left(X^{\top} X\right)^{3}+O\left(X^{8}\right)\right) \\
L \cdot X_{I J} \sim \frac{\sqrt{N}}{2 \pi} J_{I J \tilde{z}}+\frac{2 \pi}{\sqrt{N}} \Sigma_{J \tilde{z}^{3}}+\ldots
\end{gathered}
$$

Geometry

$$
\begin{gathered}
S_{\text {grav }+\phi}=\frac{1}{l_{p}^{3}} \int d^{5} x \sqrt{|g|} e^{2 \phi}\left[-R+2|\Lambda|-4 g^{a b} \partial_{a} \phi \partial_{b} \phi-V_{\phi}(\phi)\right], \quad a, b=0, \ldots 4 \\
d s^{2}=\frac{L^{2}}{\tilde{z}^{2}} A(\tilde{z})^{2}\left(f(\tilde{z}) d \tau^{2}+\frac{d \tilde{z}^{2}}{f(\tilde{z})}+d \vec{x}^{2}\right), \quad \phi=\phi(\tilde{z}) \\
f=1-\frac{\tilde{z}^{4}}{z_{H}^{4}}, \quad \phi=\tilde{\phi}_{2} \tilde{z}^{2}, \quad z_{H}=\frac{1}{\pi T} .
\end{gathered}
$$

Temperature estimations

Experimental restrictions \Leftrightarrow mass of the lightest predicted particle.

$$
\begin{gathered}
\Sigma_{I J}=\xi^{\top}\left[\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \varsigma
\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \frac{\text { AdS/CFT }}{\text { dual to }} X_{I J} \rightarrow\left(\begin{array}{cc}
0_{4 \times 4} & 0 \\
0 & \chi
\end{array}\right) \\
m_{\eta} \sim m_{\delta \chi} \text { fluctuation mass } \sim \text { slope of the "hat". }
\end{gathered}
$$

$$
\chi(z) \rightarrow \chi(z)+\delta \chi(t, \vec{x}, z) \quad \Rightarrow \quad \operatorname{EoM}_{z}[\chi] \rightarrow \mathrm{EoM}_{t, \vec{x}, z}[\chi+\delta \chi] \quad \xlongequal{\partial \mathrm{AdS}} \quad 2 m^{2}=\phi_{2}
$$

$$
T=\frac{1}{\pi} \frac{1}{z_{\mathrm{H}}} \quad \Rightarrow \quad T=\frac{m}{\pi} \sqrt{\frac{2}{\phi_{2}}}, \quad z_{\mathrm{H}}^{2}=\frac{\phi_{2}}{2 m^{2}}
$$

Gravitational Waves

The spectrum of the gravitational waves can be estimated as (within the approach of relativistic velocity of the bubble walls $v_{w} \sim 1$)

$$
\Omega_{\mathrm{GW}} h^{2}=1.67 \cdot 10^{-5} \kappa \Delta\left(\frac{\beta}{H_{*}}\right)^{-2}\left(\frac{\alpha}{1+\alpha}\right)^{2}\left(\frac{g_{*}}{100}\right)^{-\frac{1}{3}}
$$

Only scalar waves! Sound waves and turbulence are not included!
We estimate only scalar waves produced during initial collisions.

$$
f_{0}=1.65 \cdot 10^{-5} \mathrm{~Hz} \cdot \frac{f_{*}}{\beta} \frac{\beta}{H_{*}} \frac{T}{0.1 \mathrm{TeV}}\left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \mathrm{~Hz}
$$

$\left(\Omega_{\mathrm{GW}} h^{2}, f_{0}\right)$-curve is the estimation GW amplitude (peak value).
It does not contain the spectral shape $S\left(f_{0}\right)$ (in this case $S\left(f_{0}=f_{0}^{\text {peak }}\right)=1$).

"Extrema" curves

$$
\frac{\delta S_{\chi}}{\delta \chi}=0 \Rightarrow \chi \xrightarrow{z \rightarrow 0} J z+\left(\sigma-\left(\frac{3}{2} J^{3}+\phi_{2} J\right) \log z\right) z^{3}+o\left(z^{5}\right)-\begin{gathered}
\text { give the sourses } \\
\text { for CFT operators }
\end{gathered}
$$

Knowing the extrema of the effective potential and its values at these points, we can judge abut the phase transition

$$
\begin{gathered}
V_{\text {eff }}=-\left.\frac{1}{\operatorname{Vol}_{4}} S_{\chi}\right|_{\partial A d S} \Rightarrow \begin{array}{c}
\begin{array}{c}
\text { from EoM Effective } \\
\text { action }
\end{array} \\
\overbrace{\chi \xrightarrow{z \rightarrow 0}}^{\text {fol }} 4 z^{3}+o\left(z^{5}\right)
\end{array} \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=J \Rightarrow \text { must give }_{\overbrace{\frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0}^{\text {extrema }} \Rightarrow}^{\Rightarrow \begin{array}{c}
\text { a new condition } \\
\text { for } \phi_{2} \text { and }\langle\varphi\rangle
\end{array}} \begin{array}{c}
\begin{array}{c}
\text { extrema condition is } \\
\text { absence of sources }
\end{array}
\end{array} J=0 \\
T \sim \frac{1}{\sqrt{\phi_{2}}}, \quad \frac{\delta V_{\text {eff }}}{\delta\langle\varphi\rangle}=0=\left.\frac{\delta}{\delta \sigma} S_{\chi}\left[\chi_{\text {sol. }}(z ; J, \sigma)\right]\right|_{J=0} \Rightarrow \quad\left\{\sigma_{1}, \ldots, \sigma_{n}\right\} \text { - extrema }
\end{gathered}
$$

Nucleation ratio

Baryogenesis generates enough asymmetry (enough efficient) if there is one bubble per Hubble volume

$F=F[\langle\varphi\rangle, R]$ - Free energy of the bubble; R is the radius of the bubble
Hubble horizon (time, volume, radius) - speed of receding object behind it is greater than the speed of light (Don't confuse with cosmological horizon)
Bubble appears with a certain size. It defines with "micro-physics". If its radius is grater, then critical one $\left.\frac{\partial F}{\partial R}\right|_{R_{C}}{ }^{\text {def }}$, the bubble grow. Otherwise, it bursts. It gives $F_{\mathrm{C}} \stackrel{\text { def }}{=} F\left(R_{\mathrm{C}}\right)$ and defines nucleation ratio and "viability of the model".

Estimations of the nucleation ratio

$$
\Gamma \sim H_{*}^{4}, \quad \frac{\Gamma}{m^{4}} \sim \frac{H_{*}^{4}}{m^{4}} \propto \frac{m^{4}}{M_{\mathrm{Pl}}}
$$

F_{C} is defined with an error, so $e^{\frac{F_{C}}{T}}$ has large error

Potentials of CFT and the dual theory

$$
\begin{array}{rll}
V_{\chi}=a_{2} \chi^{2}+a_{4} \chi^{4}+a_{6} \chi^{6}, & a_{2}<0, a_{4}<0, a_{6}>0 & \text { no barrier } \\
V_{\text {eff }}=b_{2}\langle\varphi\rangle^{2}+b_{4}\langle\varphi\rangle^{4}+b_{6}\langle\varphi\rangle^{6}, & b_{2}>0, b_{4}<0, b_{6}>0 & \text { there's a barrier }
\end{array}
$$

in details:
. $V_{\text {eff }}=V_{\text {eff }}[\langle\varphi\rangle]$ describes a quantum objects at the border. V_{χ} is a dual classical potential in the bulk.
$=V_{\text {eff }}=-\left.\frac{1}{\text { Vol }_{4}} S_{\text {AdS }}\right|_{\partial \text { AdS }}$ includes the solutions of the EoM $\frac{\delta S_{\chi}}{\delta \chi=0}$ in bulk. In other words, $V_{\text {eff }}$ includes physics of AdS

Conditions for the dual theory potential

$$
v_{\chi}(\chi)=\frac{m^{2}}{2} \chi^{2}-\frac{D}{4 L^{2}} \lambda \chi^{4}+\frac{\lambda^{2} \gamma}{6 L^{2}} \chi^{6} \text { is the expantion of a more general theory }
$$

Suggestions:
". The potential V_{χ} always has true vacuum with $E_{\min }\left(V_{\chi} \xrightarrow{\chi \rightarrow \pm \infty} \infty\right)$. So we may use any even power χ^{n} instead of the last term χ^{6}.
\#. The expansion of V_{χ} has certain sign of the second term $\lambda>0$ (the first one m^{2} chosen for the theory to be conformal in AdS).
". Higher orders of the expansion don't give new minima at the considered temperatures.
The certain parametrization has been chosen with respect to the "symmetries"
"Scale invariace", $L \rightarrow L^{\prime}$
defining : $\chi \rightarrow \sqrt{\lambda} \chi$;
Conformality near
the AdS border ("correct" conformal weights)

$$
\begin{aligned}
& \Delta_{-}=1 \\
& \Delta_{+}=3
\end{aligned} \Rightarrow m^{2}=-\frac{D}{3 L^{2}}
$$

D is for the Large D limit. But its usage doesn't give any results.

SM - CH model interactions

$$
F \underset{\text { approximation }}{\stackrel{\text { thin walls }}{=} 4 \pi R^{2} \mu-\frac{3 \pi}{4} R^{3}\left(\mathcal{F}_{\text {out }}-\mathcal{F}_{\text {in }}\right)-\text { physical units are required }}
$$

". Fix the Parameters (Interaction with Standard Model - bulk gauge fields)
". Physical Units (Infrared Regularization and finite temperature - "radial" heavy fluctuations)

$$
W_{\mu}^{\alpha} J_{L}^{\alpha \mu}+B_{\mu} J_{\gamma}^{\mu} \quad \Leftrightarrow \quad J^{\mu} \sim A^{M} \text { - bulk } \mathcal{G} \text { gauge field }
$$

The physical values can be estimated without gauge field:
$\Sigma_{I J}=\left\langle\bar{\Psi}_{I} \Psi_{J}\right\rangle=\xi^{\top}\left[\left(\begin{array}{cc}0_{4 \times 4} & 0 \\ 0 & X\end{array}\right)+\eta_{i} \tilde{T}_{i}\right] \xi \Leftrightarrow \frac{1}{T} \propto \sqrt{\phi_{2}} \sim \mu_{\mathrm{IR}} \sim m_{\eta} \gtrsim 10 \mathrm{TeV}$
$m_{\eta} \Leftarrow X \rightarrow X+\delta X$ - correction of the background field $\quad \Rightarrow \quad \eta-$ pNG boson

CH gauge field

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\mathcal{L}_{\mathrm{CH}}+\underbrace{B_{\mu} \operatorname{Tr}\left(T_{Y} \hat{\jmath}^{\mu}\right)+W_{k, \mu} \operatorname{Tr}\left(T_{k} \hat{\jmath}^{\mu}\right)+\sum_{r} \bar{\psi}_{r} \mathcal{O}_{r}+\text { h.c. }}_{=\mathcal{L}_{\text {interactions }}} \\
\operatorname{SO}(5) \times U(1): A_{M}=A_{M}^{K} T^{K}+A_{M, Y} T_{Y} \\
S O(5) \rightarrow S O(4): \underbrace{A_{M}^{K} T^{K}}_{\in \operatorname{SO}(5)} \rightarrow \underbrace{A_{M}^{a} T^{a}}_{\in S O(4)}+\underbrace{A_{M}^{i} T^{i}}_{\in S O(5) / \text { SO(4) }} \\
S O(4) \cong \operatorname{SU}(2) \times \operatorname{SU}(2): \quad A_{M}^{K} T^{K}=\underbrace{A_{M}^{K, L} T_{L}^{K}}_{\in S U(2)_{L}}+\underbrace{A_{M}^{K, R} T_{R}^{K}}_{\in S U(2)_{R}}
\end{gathered}
$$

conserved currents: $\left.\hat{J}_{\mu} \stackrel{\text { dual }}{\Longleftrightarrow} A_{\mu}(t, x, z)\right|_{z=0} ^{2 \text { AdS }}, \quad$ holographic gauge: $A_{z}=0$
$\mathcal{O} \stackrel{\text { dual }}{\Longleftrightarrow} \mathcal{J}(A, \Psi, \phi, \ldots)$ - composite operators of the CH fields

