$W_{1+\infty}$ AND \widetilde{W} ALGEBRAS, AND WARD IDENTITIES Ya. Drachov¹, A. Mironov^{2,3,4}, and A. Popolitov^{1,3,4} ¹MIPT, Dolgoprudny, 141701, Russia ²Lebedev Physics Institute, Moscow 119991, Russia ³NRC "Kurchatov Institute", 123182, Moscow, Russia ⁴Institute for Information Transmission Problems, Moscow 127994, Russia

It was demonstrated recently that the $W_{1+\infty}$ algebra contains commutative subalgebras associated with all integer slope rays (including the vertical one). In our work, we realize that every element of such a ray is associated with a generalized \widetilde{W} algebra. In particular, the simplest commutative subalgebra associated with the rational Calogero Hamiltonians is associated with the \widetilde{W} algebras studied earlier. We suggest a definition of the generalized \widetilde{W} algebra as differential operators in variables p_k basing on the matrix realization of the $W_{1+\infty}$ algebra, and also suggest an unambiguous recursive definition, which, however, involves more elements of the $W_{1+\infty}$ algebra than is contained in its commutative subalgebras. The positive integer rays are associated with \widetilde{W}

algebras that form sets of Ward identities for the WLZZ matrix models, while the vertical ray associated with the trigonometric Calogero-Sutherland model describes the hypergeometric τ -functions corresponding to the completed cycles.

Commutative families (integer rays) on the lattice of generators of the $W_{1+\infty}$

The old $\widetilde{W}^{(\pm,n)}$ and $m = \pm 1$ rays

The two families of W algebras, corresponding to the elements of $m = \pm 1$ commutative subalgebras of $W_{1+\infty}$

The new $\widetilde{W}^{(m,n)}$ and all integer rays

There is a generalization of (1) and (2) to the whole set of

$$H_n^{(1)} = \operatorname{tr}\left(\Lambda \frac{\partial}{\partial \Lambda}\Lambda\right)^n = \sum_k p_k \widetilde{W}_{k-n}^{(-,n)},\qquad(1)$$

$$H_{-n}^{(-1)} = \operatorname{tr}\left(\frac{\partial}{\partial\Lambda}\right)^n = \sum_k p_k \widetilde{W}_{k+n}^{(+,n)}, \qquad (2)$$

where Λ is a $N \times N$ matrix. These \widetilde{W} operators posses explicit recursive definition and by definition are key constituents in Ward identities

$$\widetilde{W}_{k}^{(-,n)}Z_{n} = (n+k)\frac{\partial Z_{n}}{\partial p_{n+k}}$$
(3)

for multi-matrix models

$$Z_n = \iint_{N \times N} dX dY e^{-\operatorname{tr} XY + \sum_k \frac{p_k}{k} \operatorname{tr} X^k + \frac{1}{n} \operatorname{tr} Y^n}$$
(4)

commutative families of $W_{1+\infty}$

$$H_{n}^{(m)} = \operatorname{tr}\left(\left(\Lambda\frac{\partial}{\partial\Lambda}\right)^{m}\Lambda\right)^{n} = \sum_{k} p_{k}\widetilde{W}_{k-n}^{(m,n)}, \quad (5)$$
$$H_{-n}^{(-m)} = \operatorname{tr}\left(\Lambda^{-1}\left(\Lambda\frac{\partial}{\partial\Lambda}\right)^{m}\right)^{n} = \sum_{k} p_{k}\widetilde{W}_{k+n}^{(-m,-n)}, \quad (6)$$

which, in turn, also posess recursive defintion and define constraints on generalized WLZZ matrix models

$$Z_n^{(m)} = e^{\frac{1}{n}H_n^{(m)}} \cdot 1 \tag{7}$$

by Ward identities

$$\widetilde{W}_k^{(m,n)} Z_n^{(m)} = (n+k) \frac{\partial Z_n^{(m)}}{\partial p_{n+k}}.$$

e-mail drachov.yai@phystech.edu