Monte-Carlo simulation of processes with heavy neutrino exchange on lepton colliders

Author: Egor Vasenin, LPI RAS, MIPT Scientific Advisor: Alexey Drutskoy

Moscow International Physics School, Young Scientist Forum, February 28-6 March 2024

Seesaw Type I model

Model includes right-handed Heavy Neutral Leptons (Majorana), 3HNL: N_{1}, N_{2}, N_{3}

$$
L=L_{S M}+L_{N}+L_{W N l}+L_{Z N \nu}+L_{H N \nu}
$$

Neutrino mass matrix with Majorana and Dirac terms, y_{D} - Yukawa coupling matrix:

$$
M_{\nu}=\left(\begin{array}{cc}
0 & M_{D} \\
M_{D}^{T} & M_{N}
\end{array}\right), M_{D}=y_{D} v / \sqrt{2}, m_{\nu} \approx-M_{D} M_{N}^{-1} M_{D}^{T}
$$

Small masses of active neutrinos can be obtained with large M_{N} (HNL mass) parameters of Majorana term, e.g.
if $M_{N}=100 \mathrm{GeV}$ and $y_{D}=10^{-6} m_{\nu}=0.1 \mathrm{eV}-$ Seesaw mechanism
$V_{l N}$ (neutrino mixing parameter) and M_{N} are parameters of model.

Experimental limits on mixing parameters.

Area of small masses is limited by decays of K-mesons, Bmesons and Z-bosons

LHC current limits and future estimates have weak upper limits larger than 90 GeV

Neutrinoless double beta decay limit (GERDA) can be circumvented in some models for large M_{N}

arXiv:1502.06541

This process is widely studied by many articles

arXiv:1508.04937
$e^{-} e^{+} \rightarrow W^{-} W^{+}, W^{ \pm} \rightarrow 2 j$
Future colliders are planned for opposite-sign lepton beams

We study 4 jets final state
We assume that only one neutrino contribute in
 process

This process was not studied before

Event generation: Whizard 3
Hadronisation: Pythia6
Detector simulation and event reconstruction: Delphes/ILC card

Backgrounds and cuts

Standard Model processes with 4 jets in final state:
$e^{+} e^{-} \rightarrow W^{+} W^{-}$
$e^{+} e^{-} \rightarrow W^{+} W^{-} \nu_{e} \bar{\nu}_{e}$
$e^{+} e^{-} \rightarrow q \bar{q}$
$e^{+} e^{-} \rightarrow Z Z$
$70 \mathrm{GeV}<M_{\text {reco }}<90 \mathrm{GeV}$
$\cos \Theta<0.7$
p_{x}, p_{y} balance $<20 \mathrm{GeV}$
$\cos \Theta_{\text {decay }}<0.85$

Angular distributions

$\cos \Theta$ for pure SM (up) and pure HNL signal (down)

cos decay for pure SM (up) and pure HNL signal (down)

Jets reconstruction

> Valencia algorithm (arXiv:1404.4294, arXiv:1607.05039):
> $d_{i j}=2 \min \left(E_{i}^{2 \beta}, E_{j}^{2 \beta}\right)\left(1-\cos \Theta_{i j}\right) / R^{2}$
> $d_{i B}=E_{i}^{2 \beta} \sin ^{2 \gamma} \Theta_{i B}$
> Dependence on parameters is negligible in our reconstruction
> $\mathrm{RMS}_{90}=\sqrt{\left|M_{\text {mean }}^{2}-\left(M_{\text {mean }}\right)^{2}\right|}$

We take $R=1.0, \beta=1.0, \gamma=0.5$

Results

$e^{+} e^{-} \rightarrow W^{+} W^{-}$(unpolarised beams)
at $\sqrt{s}=1 \mathrm{TeV}$ and $L=1$ attobarn $^{-1}$
SM and SM+HNL fit datasets and $\mathrm{SM}+\mathrm{HNL}$ analysis dataset generated for different mixing parameters and masses

PDFs of 3 angles fitted for SM and SM+HNL histograms on fit datasets

Significance $=-2 \ln \frac{L_{\mathrm{SM}}}{L_{\mathrm{HNL}}}$

Evidence - significance $=3 \sigma$
$L_{\mathrm{HNL}}=\operatorname{Poiss}\left(N_{\text {analysis }} \mid N_{\mathrm{HNL}}\right.$ expected $) \cdot \Pi_{i} \operatorname{pdf}_{\mathrm{HNL}}\left(x_{i}\right)$ $L_{\mathrm{SM}}=\operatorname{Poiss}\left(N_{\text {analysis }} \mid N_{\mathrm{SM} \text { expected }}\right) \cdot \Pi_{i} \operatorname{pdf} \mathrm{SM}\left(x_{i}\right)$

Conclusions

- Future lepton colliders can provide stronger upper limits on mixing parameters for large $M_{N}>100 \mathrm{GeV}$ than existing experiments (LHC and $0 \nu \beta \beta$)
- Obtained upper limits can provide strict tests of specific Seesaw Type-I models with not constrained mixing parameter.
- We plan to study process at $\sqrt{s}=3,10 \mathrm{TeV}$
- First study on that process

Thank you for your attention

$e^{-} e^{-} \rightarrow W^{-} W^{-}$

13

p_{x}, p_{y} balance

px balance

Angle between planes

15

