Quantum effects and the effective action analysis in the massive two-dimensional $\mathrm{CP}(\mathrm{N}-1)$ sigma model in the large N limit

G. A. Sumbatian ${ }^{1,2}$ (presenter), A. V. Yung ${ }^{2}$, E. A. levlev ${ }^{3}$
${ }^{1}$ Saint Petersburg State University, Russia
${ }^{2}$ Petersburg Nuclear Physics Institute, Russia
${ }^{3}$ University of Minnesota, USA

Introduction

QCD dynamics description is one of the main unsolved problems in theoretical physics. One approach to this problem is to consider an alternative theory, scalar QCD. There is a confinement-like mechanism, with its own non-Abelian strings. Two-dimensional sigma model,as the effective theory on the surface of such a string and with a mass deformation parameter m related to Z_{N} symmetry, is the object of our study. For $m=0$ case this model was solved by Witten [1] in the large- N limit: massless photon interacts with N scalar fields n, "quarks", each of which carries a charge $\sim \frac{1}{\sqrt{N}}$ and which appear in the spectrum only in pairs $n^{*} n$, since between them there is a confining potential that grows linearly with distance. The purpose of our research is to generalize this result for the $m \neq 0$ case - there we can expect a phase transition which does not occur in its supersymmetric version.

Effective theory

The mass deformed action in the Euclidean formulation:

$$
\begin{equation*}
\mathcal{L}=\left|D_{\mu} n^{\ell}\right|^{2}+\lambda\left(\left|n^{\ell}\right|^{2}-r_{0}\right)+\sum_{\ell=1}^{N}\left|\left(\sigma-m_{i}\right) n^{\ell}\right|^{2}-\tau_{0} \sum_{\ell=1}^{N}\left|\sigma-m_{\ell}\right|^{2} \tag{0.1}
\end{equation*}
$$

(action as in [2] with extra $\sim \tau_{0}$ term)
r_{0} and τ_{0} define scales of the theory, Λ and Λ_{σ} :

$$
\Lambda^{2}=M_{u v}^{2} \exp \left(-\frac{4 \pi r_{0}}{N}\right), \quad \Lambda_{\sigma}^{2}=M_{u v}^{2} \exp \left(-4 \pi \tau_{0}\right) .
$$

The effective action can be obtained by integrating over $N-1 n^{\ell}$ fields:

$$
\begin{aligned}
V_{e f f} & =\left(\lambda+\left|\sigma-m_{0}\right|^{2}\right)|n|^{2}+\frac{1}{4 \pi} \sum_{\ell=1}^{N-1}\left|\sigma-m_{\ell}\right|^{2} c \\
& +\frac{1}{4 \pi} \sum_{\ell=1}^{N-1}\left(\lambda+\left|\sigma-m_{\ell}\right|^{2}\right)\left[1-\ln \frac{\lambda+\left|\sigma-m_{\ell}\right|^{2}}{\Lambda^{2}}\right], c \equiv \ln \frac{\Lambda_{\sigma}^{2}}{\Lambda^{2}}
\end{aligned}
$$

From it we define renormalized r_{0} constant:

$$
r_{r e n}=\frac{1}{4 \pi} \sum_{\ell=1}^{N-1} \ln \frac{\lambda+\left|\sigma-m_{\ell}\right|^{2}}{\Lambda^{2}}
$$

The Higgs phase.

If $r_{r e n}>0$, then we are in the Higgs phase, vacuum equations from the effective action in this case are

$$
|n|^{2}=r_{\text {ren }}, \quad \lambda=-\left|\sigma-m_{0}\right|^{2}, \quad \sigma=\frac{m}{c}\left[\ln \left(\frac{\sigma m}{\Lambda^{2}}\right)+1\right]
$$

From these equations and the condition of the phase transition $r_{r e n}=0$ we find the phase transition point: $m^{2}=c \Lambda^{2}$. Effective potential as a function of σ from these equations:

$$
V_{e f f}^{(H i g g s)}(\sigma)^{(H)}=-\frac{m^{2}}{4 \pi} N\left[2 \frac{\sigma}{m}\left(\ln \frac{m^{2}}{\Lambda^{2}}+\ln \frac{\sigma}{m}\right)-c\left(\left(\frac{\sigma}{m}\right)^{2}+1\right)\right]
$$

The Coulomb/confining phase.

In the Coulomb phase $r_{r e n}=0$. Then, vacuum equations are

$$
n=0, \quad \lambda=\Lambda^{2}-m^{2}, \quad \sigma=0 .
$$

Effective potential:

$$
V_{e f f}^{(\text {Coulomb })}(\sigma)=\frac{N}{4 \pi}\left[\Lambda^{2}+c m^{2}+c \sigma^{2}\left(1-\frac{m^{2}}{c \Lambda^{2}}\right)\right]
$$

Vacua and energy at the transition point.

It turns out that vacuum energy is a continuous function of m, but its first derivative has discontinuity at the transition point:

$$
\left.\frac{\partial}{\partial m} E^{(\text {Coulomb })}\right|_{m=\sqrt{c} \Lambda}-\left.\frac{\partial}{\partial m} E^{(\text {Higgs })}\right|_{m=\sqrt{c} \Lambda}=\frac{N \Lambda}{2 \pi \sqrt{c}} .
$$

Correspondence to the classical solution

Since when for $m \gg \Lambda, \Lambda_{\sigma}$ theory is at weak coupling, there must be correspondence with the classical solution:

$$
\sigma=m_{\ell_{0}} \frac{r_{0}}{r_{0}-N \tau_{0}}, \quad n^{\ell_{0}}=\sqrt{r_{0}}, \quad \text { and } n^{\ell}=0 \text { if } \ell \neq \ell_{0}
$$

It can be simply checked if one substitute the definition of r_{0} and τ_{0} into denominator and go to the renormalized value $r_{0} \rightarrow r_{r e n}$, then we get:

$$
\sigma \approx \frac{m}{c} \ln \frac{m^{2}}{\lambda^{2}},
$$

and that is exactly the VEV of σ that can be obtained from vacuum equations for large m

Dynamics in different phases.

We star with the Coulomb/confining phase. We restore the effective action. It consists of the effective potential and kinetic terms for the gauge and σ fields which induced at one loop of n^{ℓ} :

$$
\mathcal{L}_{\text {Coulomb }}=-\frac{1}{4 e_{\text {ren }}^{2}} F_{\alpha \beta}^{2}+\frac{1}{e_{\sigma}^{2}}|\partial \sigma|^{2}-V_{e f f}^{(\text {Coulomb })}(\sigma)
$$

Coupling constant from loop calculations ([3],[4])

$$
e_{r e n}^{2}=\frac{12 \pi \Lambda^{2}}{N}, \quad e_{\sigma}^{2}=\frac{24 \pi \Lambda^{4}}{N m^{2}}
$$

From the Lagrangian we find field masses:

$$
m_{\gamma}^{2}=2 e_{r e n}^{2} r_{r e n}=0, \quad m_{\sigma}^{2}=\frac{N c}{4 \pi}\left(1-\frac{m^{2}}{c \Lambda^{2}}\right) e_{\sigma}^{2}=\frac{6 c \Lambda^{4}}{m^{2}}\left(1-\frac{m^{2}}{c \Lambda^{2}}\right)
$$

We can compare m_{σ}^{2} with the lightest meson mass consisted of two n_{1} quarks, $m_{\text {meson }} \approx$ $2 m_{n_{1}}=2 \Lambda$, and find the gap of stability of the σ particle. It turns out it is

$$
\frac{3}{5} c \Lambda^{2}<m^{2}<c \Lambda^{2}
$$

(upper boundary is the phase transition point)
As for the Higgs phase, σ and photon fields do not have any dynamics since coupling constant have bad N behaviour which causes infinite contributions from their kinetic terms.

Conclusions

In this work we generalized Witten's massless large $-N$ analysis [1] on $m \neq 0$ case. We showed that in the original $U(1)$ gauge invariant formulation of $C P(N-1)$ arises an extra term required for the self-consistent renormalization procedure. We derived vacuum equations in an one-loop ap proximation and found the phase transition point, which distinguish Z_{N} asymmetric and symmetric phases. In each phase vacuum equations were solved, vacuum energy was calculated. It turned out that energy does not have a discontinuity, but its first derivative with respect to m do. It means we are dealing with the second order phase transition.
Also we tried to describe the dynamics in the Coulomb/confining and Higgs phases. For the first one we obtained the generalized result which coincides with the Witten's one[1] if we apply $m=0$. Moreover, photon remains massless as should be expected in the Coulomb phase.
As we can see, photon and σ are massless in the transition point, therefore a further possible
development of this work is to find some conformal theory in this point

References

[1] E. Witten, Instantons, The Quark Model, And The 1/N Expansion, Nucl. Phys. B 149, 285 (1979).
[2] A. Gorsky, M. Shifman and A. Yung, The Higgs and Coulomb/confining phases in 'twisted mass' deformed CP(N-1) model, Phys. Rev. D 73, 065011 (2006) [arXiv:hep-th/0512153v2].
[3] E. levlev, Dynamics of non-Abelian strings in supersymmetric gauge theories: dissertation is submitted for the degree of Candidate of Physical and Mathematical Sciences, SaintPetersburg, 2020, Sect. 4.1.2.
[4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, N. M. Queen, INTEGRALS AND SERIES, vol. 1. Elementary Functions - Sec. 4.4.6, 4.4.7 — ISBN 2-88124-089-5.

