Moscow International School of Physics 2024 Voronovo, 28 February – 6 March 2024

Measurement of the B_s^0 effective lifetime in the decay $B_s^0 \rightarrow J/\psi K_s^0$ using full Run-II CMS data

Priyanka Sadangi

National Institute of Science Education and Research, Bhubaneswar (INDIA)

Priyanka Sadangi

- Introduction
- Selections
- Lifetime validation
- Unblinded fit
- Systematics
- Summary

Introduction to lifetime

From the decay law, the decay probability of an unstable particle defined as,

 $P \alpha e^{-t/\tau}$

 τ = lifetime of the particle, t = decay time of the particle.

Decay time is defined as,

$$t = \frac{L_{xy}M_{B_s^0}}{p_T}$$

Where M_B is the mass of the B candidate. (Reconstructed mass) Lxy is the length difference between the PV (primary vertex) and SV (secondary vertex) in transverse plane. p_T is the transverse momentum of the B candidate.

The effective lifetime is obtained by performing 2D UML fit to the $J/\psi K_s^{0}$ invariant mass and the decay time.

- → Signal decay mode $B_s^0 \rightarrow J/\Psi K_s^0$
- → Control channel $B^0 \rightarrow J/\Psi K_s^0$
- → Related through interchanging all d quarks with s quarks.

The $B_s^0 \rightarrow J/\Psi K s^0$ effective lifetime is defined as,

 $\tau_{J/\psi K_s^0} = \frac{\int_0^\infty t[\Gamma(B_s^0(t) \to J/\psi K_s^0) + \Gamma(\overline{B_s^0}(t) \to J/\psi K_s^0)]dt}{\int_0^\infty [\Gamma(B_s^0(t) \to J/\psi K_s^0) + \Gamma(\overline{B_s^0}(t) \to J/\psi K_s^0)]dt}$

Can be rewritten as,

$$\tau_{J/\psi K_{s}^{0}} = \frac{\tau_{B_{s}^{0}}}{1 - y_{s}^{-2}} \left(\frac{1 + 2A_{\Delta\Gamma}y_{s} + y_{s}^{-2}}{1 + A_{\Delta\Gamma}y_{s}} \right) \text{, where } y_{s} = \tau_{B_{s}^{0}} \frac{\Delta\Gamma}{2}$$

- → The advantage of effective lifetime study is that it allows an efficient extraction of $A_{\Lambda\Gamma}$.
- → An effective lifetime for a B_s⁰ decay channel is obtained in practice by fitting a single exponential function to its untagged rate.

<u>SM lifetime results</u> : 1.619 ± 0.019 ps

Priyanka Sadangi

Signal selection and background rejection

- Selection on J/ψ and K_s^0 invariant mass.
- J/ψ and K_s^0 mass distribution is fitted with double Gaussian with common mean.
- $\pm 2.5\sigma_{\text{eff}}$ selection cut on J/ ψ (1st column) and K_s⁰ (2nd column) invariant mass.

$\underline{\Lambda^0}$ rejection

- Proton from the Λ^0 is faked as π , which may peak in the K_s⁰ invariant mass.
- The Armenteros-Podolanski method is followed to reject this background.

Private work, CMS data

- Flight length (distance between B-decay vertex to di-track vertex) significance cut is applied $>5\sigma$.
- To suppress the combinatorial backgrounds we used MVA (BDT) followed by initial selections.
 - \rightarrow 8 different discriminating variables which are less correlated with decay time used as Input variables.
 - → Input variables alpha_xy, Ks p_T pvips, B_vtxprob, Ks_vtxprob, J/ Ψ p_T η_B Ks_alphaxy
 - → Optimization is based on least lifetime error. For this, toy study has been performed.
 - → For each BDT values, toys have been generated and fitted like data fit. 2D UML fit to individual years is performed for BDT optimization.

The optimized BDT cut values: 2016 - 0.61, 2017 - 0.60 and 2018 - 0.61.

Data-Simulation comparison for the control channel $(B^0 \rightarrow J/\Psi K_s^0)$ are verified. The comparisons are in agreement.

Decay time Data-simulation comparison

 \rightarrow

 \rightarrow

CMS-PAS-BPH-22-001

Efficiency

→ The generator level decay time for B mesons is a simple exponential function.

- → However, trigger and other selection cuts distort this exponential function. This distortion is measured by efficiency.
- → The function used to describe the efficiency distribution (range: 0.2ps 10 ps).

$$\epsilon(t; p_0, p_1, p_2, p_3, p_4) = p_0 + p_1 t + p_2 t^2 + \frac{p_3}{1 + exp(-p_4 t)}$$

Validation with signal MC

CMS-PAS-BPH-22-001

Private work. CMS data Private work, CMS data mean = 5.279923 ± 0.000100 Similation × 1200 Similation Sigma 1 = 0.004801 ± 0.00130 Sigma2 = 0.011996 ± 0.000512 1000 - 6 Siama3 = 0.025778 ± 0.00108 1000 t = 1.527 ± 0.007 pt Frac1 = 0.093673 ± 0.046426 2²/NDF = 1.00 Frac2 = 0.758477 ± 0.029689 **B**⁰ -2 NDE - 1 04 400 400 200and a second 5.32 5.34 Μ (J/ψ K_s⁰) [GeV] 5.3 5.26 5 28 Decay time (J/w K) [GeV] D-II Private work, CMS data Private work, CMS data 1200 Simulation Similation 1000 t = 1,474 ± 0.007 ps mean = 5.367167 ± 0.000113 2 NDF = 1.15 800 -2 MDE - 0.92 800 600 400 $\mathbf{B}_{\mathbf{s}}^{0}$ 200 5.32 5.34 5.36 5.38 5.4 5.42 5 M (J/ψ K_°) [GeV] Decay time (J/w K⁰) [GeV] Pull Dull

Mass and decay time projection plots from MC :

- → Effective lifetime is extracted after performing a simultaneous fit over three year signal MC using 2D UML method
- → The lifetime obtained from simultaneous fit (to three years) to the B⁰ signal MC samples is 1.527 ± 0.007ps (generated lifetime value is 1.525ps) and to the B_s⁰ signal MC samples is 1.474 ± 0.007ps (generated lifetime is 1.472ps).

Final fit to full Run-2 data

CMS-PAS-BPH-22-001

The measured lifetime of the B⁰ meson 1.521 ± 0.007 ps is in accordance with the value reported by the PDG (1.519 ± 0.004 ps). The consistency in the B⁰ lifetime value implies that there is no bias in the B⁰_s lifetime measurement. The effective lifetime for B⁰_s meson is measured as - 1.59 ± 0.07 ps.

Sources of systematic uncertainties and total systematic uncertainties:

Sources	Uncertainty (in ps)
Limited MC statistics	0.006
Efficiency modeling	0.002
Deviation in control channel lifetime	0.002
Signal and background mass model	0.022
Background decay time model	0.014
Mass shape variation	0.007
Different fit strategy	0.006
Total	0.028

- → The effective lifetime for B_s^0 meson with the decay $B_s^0 \rightarrow J/\Psi K_s^0$ has been measured.
- → Control channel lifetime is well in line with PDG \implies No obvious bias in the B⁰ lifetime measurement.
- \rightarrow The measured effective lifetime from the simultaneous fit for B_s^0 is

 $\tau_{B_s^0} \rightarrow J/\Psi K_s^0 = 1.59 \pm 0.07 \text{ (stat)} \pm 0.03 \text{ (syst) ps.}$

→ The result is in agreement with the standard model prediction and ~60% improvement compared to LHCb results.

Final fit to full Run-2 data

<u>CM2-PA2-BPH-22-001</u>

Parameters	Values
B ⁰ combined yield	68456 ± 265
B _s ⁰ combined yield	727 ± 35
B ⁰ lifetime	1.521 ± 0.007 ps
B _s ⁰ lifetime	$1.59 \pm 0.07 \text{ ps}$

The measured lifetime of the B⁰ meson is in accordance with the value reported by the PDG (1.519 ± 0.004 ps). B_s⁰ lifetime is in agreement with the SM predicted value (1.619 ± 0.019 ps).

Decay time projection plot only for signal region [5.34-5.42 GeV]

- At 15 metres high and 21 metres long, it really is quite compact for all the detector material it contains.
- It is designed to detect particles known as muons very accurately.
- It has the most powerful solenoid magnet ever made.

- α_{xy} : Angle in the transverse plane between the B_s^0 momentum and the separation between the B_s^0 vertex and the primary vertex.
- B Prob : B vertex probability.
- K_s^0 Prob : K_s^0 vertex probability.
- $J/\psi p_T$: Transverse momentum of J/ψ candidate.
- $K_s^0 p_T$: Transverse momentum of K_s^0 candidate.
- B pvips : Impact parameter significance of B candidate.
- B eta (η_B) : η of B candidate.
- $K_s^0 \alpha_{xy}$: Angle between vector joining B_s^0 and K_s^0 vertices and K_s^0 momentum

