

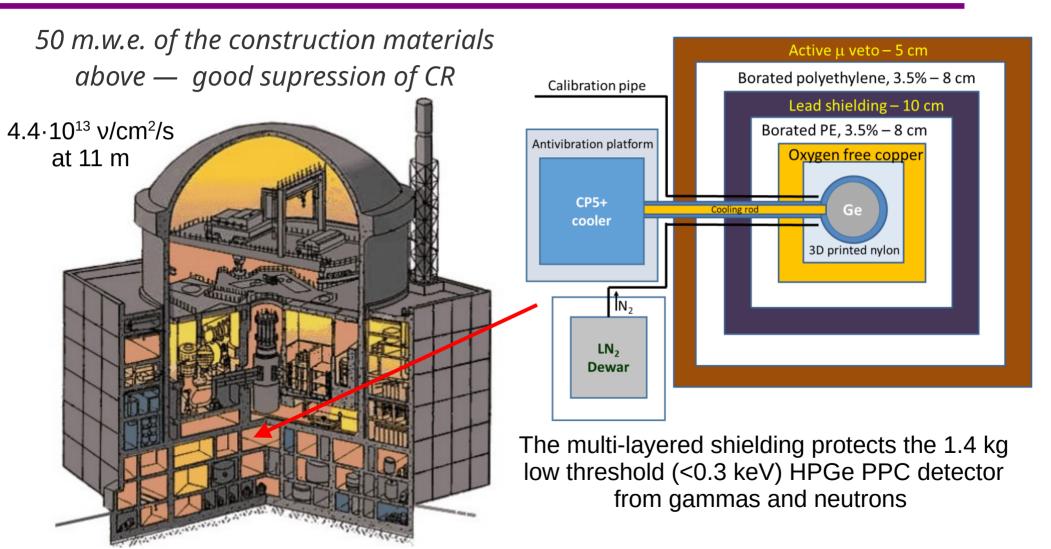
A. Konovalov (LPI RAS)

Evolution of the background with time in the vGeN experiment

Moscow International School of Physics, Voronovo

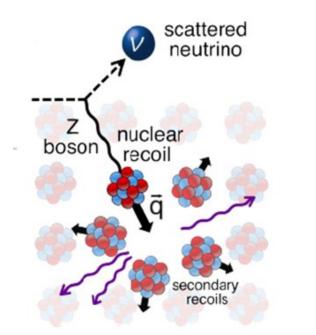
March 5 2024

Neutrino experiments at KNPP



Kalinin Nuclear Power Plant — Udomlya, Tver Region

Four neutrino experiments at the same nuclear power plant!



The ν GeN experiment

The goals

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

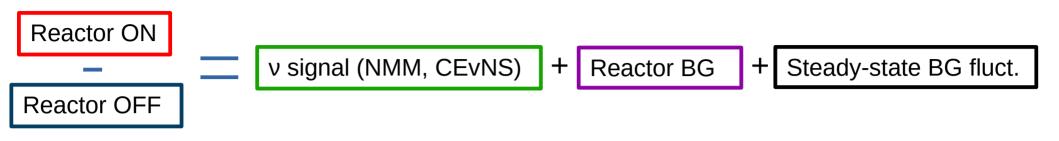
vGeN CEvNS limits : Phys. Rev. D 106, L051101 (2022) Lomonosov-2023, D. Ponomarev

Neutrino-Magnetic Moment (NMM) $\nu(p_f)$ $\nu(p_i)$ $\gamma(q)$ $\mu_{\nu} = \frac{3 \ e \ G_F}{8 \ \pi^2 \sqrt{2}} \cdot m_{\nu} \approx 3 \cdot 10^{-19} \mu_B \cdot \frac{m_{\nu}}{1 \text{eV}} - \text{SM}$ BSM + Majorana v allow $\mu_{\nu} \sim 10^{-11} \mu_{B}$ $\frac{d\sigma_{\rm EM}}{dT} = \pi r_0^2 \left(\frac{\mu_\nu}{\mu_B}\right)^2 \left(\frac{1}{T} - \frac{1}{E}\right)$

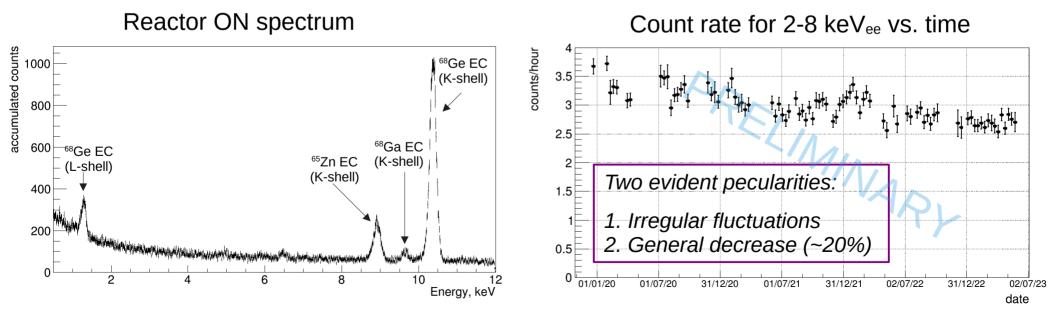
for scattering on electrons

vGeN μ_{ν} sensitivity and a limit : MISP-2024, G. Ignatov (poster)

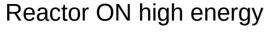
ν GeN and competitors

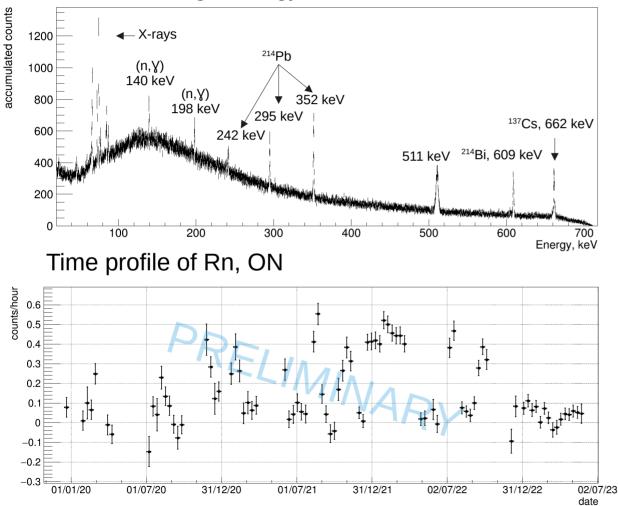

The previous best NMM limit at the reactor is set by GEMMA — $\mu_{\nu} < 2.9 \cdot 10^{-11} \mu_{B}$ (90% C.L.)

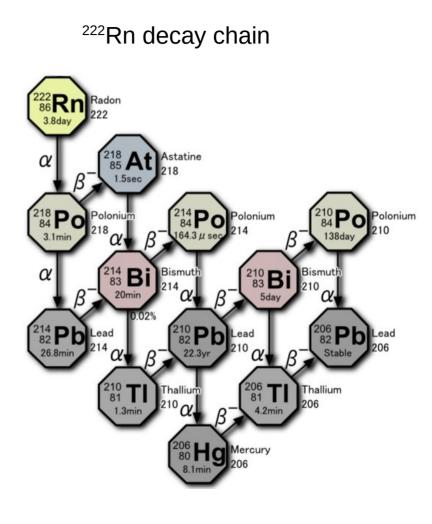
Experiment	Mass, kg	ν flux, cm ⁻² s ⁻¹	E _{th} , keV _{ee}	Reference	
GEMMA	1.5	2.7·10 ¹³	2.8	Adv.High Energy Phys. 2012	
vGeN	1.4	4.4·10 ¹³	0.2-0.3	Phys.Rev.D 106 (2022)	
COvUS	3.7	2.3·10 ¹³	0.2-0.3	Eur.Phys.J.C 82 (2022)	
Dresden-II	2.9	4.8·10 ¹³	0.2-0.3	JHEP 09 164 (2022)	

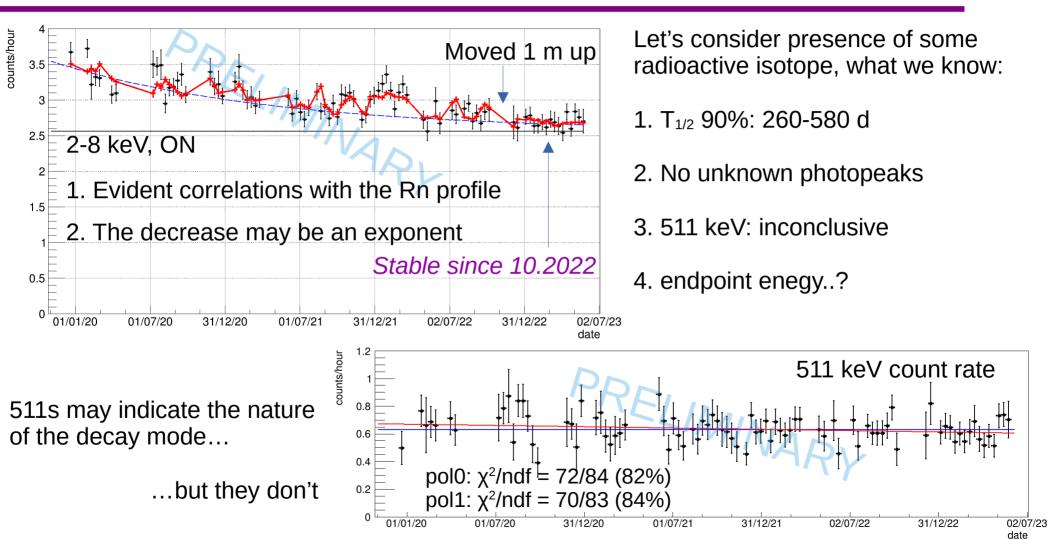

All three new experiments have a chance to set a better NMM limit!

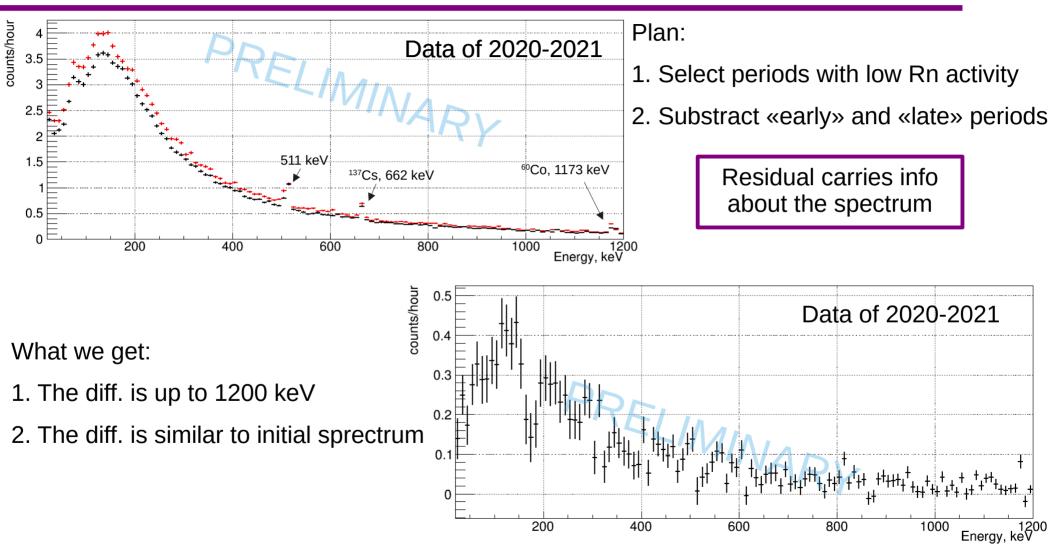
LZ dark matter experiment (solar v) — $\mu_{\nu} < 1.5 \cdot 10^{-11} \mu_{B}$ (90% C.L.) Phys. Rev. D 107, 053001 (2023) Astrophysical considerations — $\mu_{\nu} < 3.0 \cdot 10^{-12} \mu_{B}$ (90% C.L.) Astrophys. Journal, 365 559 (1990)


Total vGeN exposure up to 2024 is 1500 kg*d > 1400 kg*d for GEMMA!




vGeN reliably operates since 2020, no evident reactor-correlated BG


Radon and it's profile



Let's fit

8

Residual energy spectrum

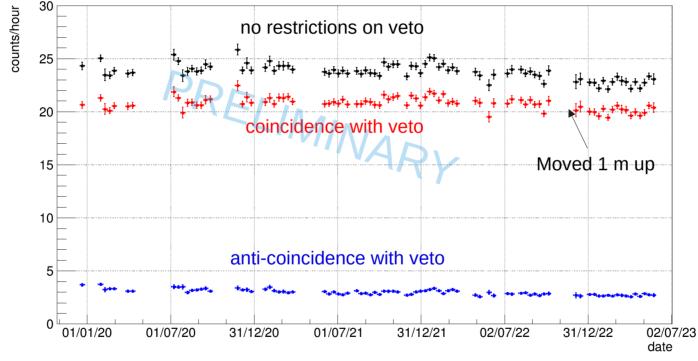
Candidates for the unknown BG component

http://nucleardata.nuclear.lu.se											
Nuclide search											
T _{1/2} (parent) ≥ 260 d; T _{1/2} (parent) ≤ 580 d;											
luclide	Z	Ν	Decay mode	Half life	E _x (keV)	Jπ	Abundance (%)				
49V	23	26	ε	330 d <i>15</i>	0	7/2-					
⁵⁴ Mn	25	29	ε+β⁺, β⁻	312.3 d 4	0	3+					
⁵⁷ Co	27	30	ε	271.79 d <i>9</i>	0	7/2-					
68Ge	32	36	ε	270.8 d 3	0	0+					
¹⁰⁶ Ru	44	62	β-	373.59 d 15	0	0+					
¹⁰⁹ Cd				462.6 d 4	0	5/2+					
^{119m} Sn				293.1 d 7	89.531 <i>13</i>	11/2-					
¹⁴³ Pm				265 d 7	0	5/2+					
<u>144Ce</u>				284.893 d 8	0	0+					
¹⁴⁴ Pm				363 d 14	0	5-					
145 Sm		83	ε	340 d 3	0	7/2-					
¹⁷³ Lu		102		1.37 y 1	0	7/2+					
235 <u>Np</u>				396.1 d <i>12</i>	0	5/2+					
				333.5 d 28	0	0+					
			β ⁻ , α, SF	320 d 6	0	7/2+					
²⁵² Es				471.7 d 19	0	(5-)					
254 <u>Es</u>	99	155	α, ε, β⁻, SF	275.7 d <i>5</i>	0	(7+)					

N

WANTED: $E_{dep} > 1200 \text{ keV}$ γ / β^{-} No extra linesSane origin

Need to check the daughter-nuclei too! A potential candidate: ¹⁴⁴Ce


¹⁴⁴Ce

$$T_{1/2} = 285 \text{ d}, E_{\beta} = 319 \text{ keV}$$

¹⁴⁴Pr
 $T_{1/2} = 17 \text{ m}, E_{\beta} = 3 \text{ MeV}$
¹⁴⁴Nd
 $T_{1/2} = 10^{15} \text{ y}$
Originates from the reactor fuel, thus should not be alone

Need a simulation to test

Other hypotheses

Can it be the degradation of the detector? - No

Can it be the change in the veto efficiency? - Maybe

No ~20% decrease in the rate associated with the μ veto

Conclusion

1. ²²²Rn-related BG is observed, it can be taken into account

Empirical time profile from ²¹⁴Pb and ²¹⁴Bi G4 sim under preparation for the energy profile

2. Plausible explanations for the BG decrease found, need a simulation

Time profile doesn't contradict the expo decay

The energy profile can be extracted from the data given the ²²²Rn correction

Thank you for your attention!