Cosmology and particle physics Lecture #2 Observables in the Hot Big Bang model

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Moscow International School of Physics

HSE study center, Voronovo, Moscow region, Russia

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

Outline

Astrophysical and cosmological data are in agreement

$ \begin{pmatrix} \frac{\dot{a}}{a} \end{pmatrix}^2 = H^2(t) = \frac{8\pi}{3} G\rho_{\text{density}}^{\text{energy}} $ $ \rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda} $	
$ ho_{ m radiation} \propto 1/a^4(t) \propto T^4(t), ho_{ m matter} \propto 1/a^3(t)$ $ ho_{\Lambda} = { m const}$	
$rac{3 H_0^2}{8 \pi G} = ho_{ ext{density}}^{ ext{energy}}(t_0) \equiv$	$ ho_c pprox 0.53 imes 10^{-5} rac{ m GeV}{ m cm^3}$
radiation:	$\Omega_{\gamma} \equiv rac{ ho_{\gamma}}{ ho_{ m c}} = 0.5 imes 10^{-4}$
Baryons (H, He):	$\Omega_{\rm B} \equiv \frac{\rho_{\rm B}}{\rho_{\rm C}} = 0.05$
Neutrino:	$\Omega_{ m v}\equivrac{\Sigma ho_{ m v_{\it i}}}{ ho_{ m c}}<0.01$
Dark matter:	$\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{2} = 0.27$
Dark energy:	$\Omega_{\Lambda} \equiv \frac{\frac{\rho_{C}}{\rho_{\Lambda}}}{\frac{\rho_{C}}{\rho_{c}}} = 0.68$

Dmitry Gorbunov (INR)

Lecture #2. 4 March 2024 **MISP 2024**

Determination of a(t) reveals the composition of the present Universe

 $\Delta s^2 = c^2 \Delta t^2 - \frac{a^2(t)}{a^2} \Delta \vec{x}^2 \rightarrow ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$ How do we check it?

- Light propagation changes... by measuring distance *L* to an object!
- Measuring angular size θ of an object of known size d

single-type galaxies

• Measuring angular size $\theta(t)$ corresponding to physical size d(t) with known evolution - BAO in galaxy distribution

- lensing of CMB anisotropy

Measuring brightness J of an object of known luminosity F

"standard candles"

$$J = \frac{F}{4\pi L^2}$$

In the expanding Universe all these laws get modified

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

Results of distance measurements

Photons in the expanding Universe

$$S = -rac{1}{4}\int d^4x \sqrt{-g}g^{\mu
u}g^{\lambda
ho}F_{\mu\lambda}F_{
u
ho}$$

 $dt = ad\eta$ conformally flat metric $ds^{2} = dt^{2} - a^{2}(t)\delta_{ij}dx^{i}dx^{j} \longrightarrow ds^{2} = a^{2}(\eta)[d\eta^{2} - \delta_{ij}dx^{i}dx^{j}]$

$$S = -\frac{1}{4} \int d^4 x \, \eta^{\mu\nu} \eta^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho} , \qquad \qquad A^{(\alpha)}_{\mu} = e^{(\alpha)}_{\mu} e^{ik\eta - i\mathbf{kx}} , \quad k = |\mathbf{k}|$$

 $\Delta x = 2\pi/k$, $\Delta \eta = 2\pi/k$

$$\lambda(t) = a(t)\Delta x = 2\pi \frac{a(t)}{k}, \quad T = a(t)\Delta \eta = 2\pi \frac{a(t)}{k}$$

Redshift and the Hubble law $\lambda_0 = \lambda_i \frac{a_0}{a(t_i)} \equiv \lambda_i (1 + z(t_i))$

$$\mathbf{p}(t) = rac{\mathbf{k}}{a(t)}, \ \omega(t) = rac{k}{a(t)}$$

for not very distant objects

 $1\,\mathrm{pc}\,{\approx}\,3\,\mathrm{ly}$

 $a(t_i) = a_0 - \dot{a}(t_0)(t_0 - t_i) \longrightarrow a(t_i) = a_0[1 - H_0(t_0 - t_i)]$

$$z(t_i) = H_0(t_0 - t_i) = H_0 r , \quad z \ll 1$$
$$H_0 = h \cdot 100 \frac{\mathrm{km}}{\mathrm{s} \cdot \mathrm{Mpc}} , \quad h \approx 0.68$$

similar reddening for other relativistic particles (small *H*, *H*, etc.) $\mathbf{p} = \frac{\mathbf{k}}{a(t)}$ is true for massive particles as well

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

Gas of free particles in the expanding Universe

homogeneous gas in comoving coordinates: $dN = f(\mathbf{p}, t) d^3 \mathbf{X} d^3 \mathbf{p}$

 $d^3 \mathbf{x} = \text{const}, \quad d^3 \mathbf{k} = \text{const}, \quad f(k) = \text{const}$ $f(k)d^3 \mathbf{x} d^3 \mathbf{k} = \text{const}$

comoving volume equals physical volume

$$d^{3}\mathbf{x}d^{3}\mathbf{k} = d^{3}(a\mathbf{x})d^{3}\left(\frac{\mathbf{k}}{a}\right) = d^{3}\mathbf{X}d^{3}\mathbf{p}$$
$$f(\mathbf{p},t) = f(\mathbf{k}) = f[\mathbf{a}(t)\cdot\mathbf{p}].$$
$$t = t_{i} : f_{i}(\mathbf{p}) \longrightarrow f(\mathbf{p},t) = f_{i}\left(\frac{\mathbf{a}(t)}{\mathbf{a}(t_{i})}\mathbf{p}\right)$$

 $(|\mathbf{n}|)$

fermions

$$\frac{1}{e^{|\mathbf{p}|/T_i} - 1}$$

$$f_{i}(\mathbf{p}) = f_{\mathsf{PI}}\left(\frac{|\mathbf{p}|}{T_{i}}\right) = \frac{1}{(2\pi)^{3}} \frac{1}{e^{|\mathbf{p}|/T_{i}} - 1}$$
$$f(\mathbf{p}, t) = f_{\mathsf{PI}}\left(\frac{a(t)|\mathbf{p}|}{a_{i}T_{i}}\right) = f_{\mathsf{PI}}\left(\frac{|\mathbf{p}|}{T_{eff}(t)}\right)$$
$$T_{eff}(t) = \frac{a_{i}}{a(t)}T_{i}$$

decoupling at $T \gg m$: neutrinos, hot(warm) dark matter decoupling at $T \ll m$: $f(\mathbf{p}) = \frac{1}{(2\pi)^3} \exp\left(-\frac{m-\mu_i}{T_i}\right) \exp\left(-\frac{a^2(t)\mathbf{p}^2}{2ma_i^2 T_i}\right)$

$$f(\mathbf{p},t) = \frac{1}{(2\pi)^3} \exp\left(-\frac{m - \mu_{eff}}{T_{eff}}\right) \exp\left(-\frac{\mathbf{p}^2}{2mT_{eff}}\right)$$

$$T_{eff}(t) = \left(rac{a_i}{a(t)}
ight)^2 T_i , \qquad rac{m - \mu_{eff}(t)}{T_{eff}} = rac{m - \mu_i}{T_i}$$

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

Einstein equations

 $T_{\mu\nu}$: macroscopic description $T_{\mu\nu} = (\rho + \rho) u_{\mu} u_{\nu} - g_{\mu\nu} \rho$

in the comoving frame $u^0 = 1$, $\mathbf{u} = 0$

 $\frac{\frac{1}{2}\int d^4x\sqrt{-g}T_{\mu\nu}\delta g^{\mu\nu}}{\text{ideal fluid with }\rho(t)\text{ and }\rho(t)}$

(almost) always works

 $T^{v}_{\mu} = diag(
ho, ho)$

$$ds^{2} = dt^{2} - a^{2}(t)\gamma_{ij}dx^{i}dx^{j},$$
$$S_{EH} = -\frac{1}{16\pi G}\int d^{4}x\sqrt{-g}R : R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi GT_{\mu\nu}$$

$$(00): \quad \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{\varkappa}{a^2}$$

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024 10/35

Dark Energy: all evidences are from cosmology

Working hypothesis is cosmological constant $\Lambda \approx (2.5 \times 10^{-3} \text{ eV})^4$: $\rho = w(t)\rho$, w = const = -1, $\rho = \Lambda$

$$S_{\Lambda} = -\Lambda \int d^4x \sqrt{-\det g_{\mu\nu}}$$

both parts contribute

$$S_{\text{grav}} = -\frac{1}{16\pi G} \int d^4 x \sqrt{-\det g_{\mu\nu}} R ,$$
$$S_{\text{matter}} = \int d^4 x \sqrt{-\det g_{\mu\nu}} \left(\frac{1}{2} g^{\lambda\rho} \partial_\lambda \phi \partial_\rho \phi - V(\phi)\right)$$

natural values

 $\Lambda_{\text{grav}} \sim 1/G^2 \sim (10^{19} \,\text{GeV})^4 , \quad \Lambda_{\text{matter}} \sim V(\phi_{\text{vac}}) \sim (100 \,\text{GeV})^4, (100 \,\text{MeV})^4, \dots$ Why Λ is small?
Why $\Lambda \sim \rho_{\text{matter}}$?
Why $\rho_B \sim \rho_{DM} \sim \rho_{\Lambda}$ today?
Dmitry Gorbunov (INR)
Lecture #2, 4 March 2024
MISP 2024
11/35

Friedmann equation for the present Universe

$$\begin{aligned} \mathcal{H}^2 &\equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G(\rho_{\rm M} + \rho_{rad} + \rho_{\Lambda} + \rho_{\rm curv}) \\ &\frac{8\pi}{3}G\rho_{\rm curv} = -\frac{\varkappa}{a^2}, \quad \rho_c \equiv \frac{3}{8\pi G}H_0^2 \\ \rho_c &= \rho_{\rm M,0} + \rho_{rad,0} + \rho_{\Lambda,0} = \rho_c = 0.52 \cdot 10^{-5}\frac{\text{GeV}}{\text{cm}^3}, \quad \text{ for } h = 0.7 \\ &\Omega_X \equiv \frac{\rho_{X,0}}{\rho_c} \end{aligned}$$

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho_{c}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3} + \Omega_{rad}\left(\frac{a_{0}}{a}\right)^{4} + \Omega_{\Lambda} + \Omega_{curv}\left(\frac{a_{0}}{a}\right)^{2}\right]$$

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

Brightness-redshift dependence in the Universe

$$ds^{2} = dt^{2} - a^{2}(t) \left[d\chi^{2} + \sinh^{2}\chi \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

coordinate distance $\rho/R \rightarrow \chi = \int_{t_i}^{t_0} \frac{dt}{a(t)}$

$$\chi(z) = \int_0^z \frac{dz'}{a_0 H_0} \frac{1}{\sqrt{\Omega_M (z'+1)^3 + \Omega_\Lambda + \Omega_{CUTV} (z'+1)^2}}$$

$$\begin{aligned} a_0^2 H_0^2 \Omega_{curv} &= 1 , \quad \Omega_{\rm M} + \Omega_{\Lambda} + \Omega_{curv} &= 1 \\ S(z) &= 4\pi r^2(z) , \quad r(z) &= a_0 \sinh \chi(z) \end{aligned}$$

detector: $N_{\gamma} \propto S^{-1}$, $\omega = \omega_i/(1+z)$, $dt_0 = (1+z)dt_i$ hence the brightness (energy flux measured by a detector) is

$$J = rac{L}{(1+z)^2 S(z)} \equiv rac{L}{4\pi r_{ph}^2}, \quad r_{ph} = (1+z) \cdot r(z)$$

 $z(t) = \frac{a_0}{a(t)} - 1$

Brightness-redshift dependence: SNe la

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024 15/35

ИI ЯN ИR

2105.05208

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024

Last scattering: $\gamma e \rightarrow \gamma e$

$$\sigma_{\rm T} = \frac{8\pi}{3} \frac{\alpha^2}{m_{\rm e}^2} \approx 0.67 \cdot 10^{-24} \, {\rm cm}^2 \,, \qquad \tau_{\gamma} = \frac{1}{\sigma_{\rm T} \cdot n_{\rm e}(T)}$$

last scattering:

 $au_{\gamma}(T_f) \simeq H^{-1}(T_f) \simeq t_f$

$$T_f = 0.26 \text{ eV}, \quad z = 1100, \quad t_f = 370\,000 \text{ yr}$$

for general processes one should solve kinetic equations

$$\frac{dn_{X_i}}{dt} + 3Hn_{X_i} = \int (production - destruction)$$

Boltzmann equation in a comoving volume: $\frac{d}{dt}(na^3) = a^3 \int \dots$

Recombination: $p + e \rightarrow H + \gamma$, $T_{rec} \approx 0.25 \text{ eV}$

Large Scale Structure

CMB anisotropy

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024

Sound waves in photon-electron plasma

- Subhorizon Inhomogeneities of photons $\delta \rho_{\gamma} / \rho_{\gamma}$ oscillate with constant amplitude at RD and with decreasing amplitude at MD, thus we can measure $T_{RD/MD} / T_{rec}$
- Phase of oscillations decoupled after recombination depends on the wave-length, recombination time and sound speed

$$\delta \rho_{\gamma} / \rho_{\gamma} \propto \cos\left(k \int_{0}^{t_{r}} \frac{v_{s} dt}{a(t)}\right) = \cos(k I_{sound})$$

 $\delta T(\theta, \varphi) = \sum a_{lm} Y_{lm}(\theta, \varphi) , \qquad \langle a_{lm}^* a_{lm} \rangle = C_l \equiv 2\pi \mathscr{D}_l / (l(l+1))$

N

CMB measurements $I_{rec}, \Omega_{DM}, \Omega_B, \Omega_\Lambda, \Delta_{\mathscr{R}}, n_s, z_{rei}$

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024 24/35

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024

25/35

ЯN

Universe content from astrophysics

Gravitational lensing

"Bullet" cluster

Dmitry Gorbunov (INR)

Lecture #2. 4 March 2024 **MISP 2024**

Universe content from cosmology

Dmitry Gorbunov (INR)

Lecture #2, 4 March 2024

MISP 2024

Friedmann equation for the present Universe

$$\begin{split} \mathcal{H}^2 &\equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G(\rho_{\rm M} + \rho_{rad} + \rho_{\Lambda} + \rho_{\rm curv})\\ &\frac{8\pi}{3}G\rho_{\rm curv} = -\frac{\varkappa}{a^2} , \quad \rho_c \equiv \frac{3}{8\pi G}H_0^2\\ \rho_c &= \rho_{\rm M,0} + \rho_{rad,0} + \rho_{\Lambda,0} = \rho_c = 0.53\cdot 10^{-5}\frac{\rm GeV}{\rm cm^3} ,\\ &\Omega_X \equiv \frac{\rho_{X,0}}{\rho_c} \end{split}$$

$$\left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi}{3}G\rho_{c}\left[\Omega_{M}\left(\frac{a_{0}}{a}\right)^{3} + \Omega_{rad}\left(\frac{a_{0}}{a}\right)^{4} + \Omega_{\Lambda}\right]$$

Examples of cosmological solutions

$$\varkappa = 0$$
 $\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho$

S

dust: p = 0 singular at $t = t_s$

$$\rho = \frac{\text{const}}{a^3}, \quad a(t) = \text{const} \cdot (t - t_s)^{2/3}, \quad \rho(t) = \frac{\text{const}}{(t - t_s)^2}$$

$$t_s = 0$$
, $H(t) = \frac{\dot{a}}{a}(t) = \frac{2}{3t}$, $\rho = \frac{3}{8\pi G}H^2 = \frac{1}{6\pi G}\frac{1}{t^2}$

the Universe is too young

$$t_0 = \frac{2}{3H_0} = 0.9 \times 10^{10} \text{ yr} \quad (h = 0.7)$$

Cosmological (particle) horizon $I_H(t)$

distance covered by photons emitted at t = 0

the size of causally-connected region — the size of the visible part of the Universe

in conformal coordinates: $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size of the horizon equals $\eta(t) = \int d\eta$

$$I_{H}(t) = a(t)\eta(t) = a(t) \int_0^t \frac{dt'}{a(t')}$$

dust

$$I_{H}(t) = 3t = \frac{2}{H(t)}$$
, $I_{H,0} = 2.6 \times 10^{28}$ cm $(h = 0.7)$

Dmitry Gorbunov (INR)

Examples of cosmological solutions

$$\begin{array}{ll} \text{radiation:} \qquad p = \frac{1}{3}\rho & \text{singular at } t = t_s \\ \rho = \frac{\text{const}}{a^4} \,, & a(t) = \text{const} \cdot (t - t_s)^{1/2} \,, & \rho(t) = \frac{\text{const}}{(t - t_s)^2} & \hline \\ t_s = 0 \,, & H(t) = \frac{\dot{a}}{a}(t) = \frac{1}{2t} \,, & \rho = \frac{3}{8\pi G} H^2 = \frac{3}{32\pi G} \frac{1}{t^2} \\ l_H(t) = a(t) \int_0^t \frac{dt'}{a(t')} = 2t = \frac{1}{H(t)} \,. \\ \text{In case of thermal equilibrium} & T = \text{const}/a \\ \rho_b = \frac{\pi^2}{30} g_b T^4 \,, & \rho_f = \frac{7}{8} \frac{\pi^2}{30} g_f T^4 \\ \rho = \frac{\pi^2}{30} g_* T^4 \,, & g_* = \sum_b g_b + \frac{7}{8} \sum_t g_f = g_*(T) \end{array}$$

Dmitry Gorbunov (INR)

h

Examples of cosmological solutions

vacuum:
$$T_{\mu\nu} = \rho_{\nu ac} \eta_{\mu\nu}$$
 $\rho = -\rho$
 $S_G = -\frac{1}{16\pi G} \int R \sqrt{-g} d^4 x$, $S_\Lambda = -\Lambda \int \sqrt{-g} d^4 x$.

$$a = \text{const} \cdot e^{H_{dS}t}$$
, $H_{dS} = \sqrt{\frac{8\pi}{3}G\rho_{vac}}$

de Sitter space: space-time of constant curvature

$$ds^2 = dt^2 - e^{2H_{dS}t} d\mathbf{x}^2$$

 $\ddot{a} > 0$, no initial singularity

$ds^2 = dt^2 - e^{2H_{dS}t} d\mathbf{x}^2$

no cosmological horizon: $I_{\rm H}(t) = e^{H_{dS}t} \int_{-\infty}^{t} dt' e^{-H_{dS}t'} = \infty$

de Sitter (events) horizon ($\mathbf{x} = 0, t$): from which distance I(t) one can detect light emitted at t?

in conformal coordinates: $ds^2 = 0 \longrightarrow |d\mathbf{x}| = d\eta$ coordinate size: $\eta(t \to \infty) - \eta(t) = \int_t^\infty \frac{dt'}{a(t')}$

physical size: $I_{dS} = a(t) \int_t^{\infty} \frac{dt'}{a(t')} = \frac{1}{H_{dS}}$

observer will never be informed what happens at distances larger than $I_{dS} = H_{dS}^{-1}$ Our future? with $H_{dS} = 0.8 \times H_0$

Standard cosmological model $ds^2 = dt^2 - a^2(t)dx^2$

$$\left(\frac{\dot{a}}{a}\right)^{2} \equiv H^{2} = H_{0}^{2} \left[\Omega_{\Lambda} + (\Omega_{DM} + \Omega_{B} + \Omega_{\nu, m \neq 0}) \left(\frac{a_{0}}{a}\right)^{3} + (\Omega_{\gamma} + \Omega_{\nu, m = 0}) \left(\frac{a_{0}}{a}\right)^{4}\right]$$

- $\bullet \ T_{\gamma} = 2.735 \, \text{K}, \quad \Longrightarrow \quad \Omega_{\gamma} \sim 10^{-5}$
- $N_v \approx 3$, $\Sigma m_v < 0.2 \, \mathrm{eV}$ \implies $\Omega_{v, \neq 0}$, $\Omega_{v, 0} \sim 10^{-5}$?
- $\Omega_B = 4.5\% \implies \eta_B \equiv n_B/n_\gamma = 6 \times 10^{-10}$
- $\Omega_{DM} = 27.5\%$
- $H_0 = 67 \, {\rm km/s/Mpc} \implies
 ho_0 = 5 \, {\rm GeV/m^3}$
- $\Omega_{\Lambda} = 68\% \implies$ flat space
- adiabatic, gaussian matter perturbations

$$\langle \left(\frac{\delta \rho}{\rho}\right)^2 \rangle \sim A_S \int \frac{dk}{k} \left(\frac{k}{k_*}\right)^{n_S - 1}$$

with $A_S = 3 \times 10^{-9}$ and $n_S = 0.97$

- no tensor perturbations, $r \equiv A_T / A_S < 0.05$
- reionization at $z \equiv a_0/a = 10$