Black holes Part 1. Black holes in General Relativity

Dmitry Levkov

INR RAS & ITMP MSU

Voronovo, Russia, 29/02/2024

Flat spacetime

- Universal units: $\hbar = c = 1$
- Coordinates:

 $x^{\mu} = (t, x^1, x^2, x^3)$

Interval:

 $ds^2 = -dt^2 + (dx^i)^2$

measures time & distanceLorentz-invariant

• Gives causality:

General relativity: gravity = curved space-time

• Massive bodies curve the spacetime!

$$\underbrace{\frac{R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R}{\text{curvature}} = 8\pi G \underbrace{T_{\mu\nu}}_{\text{matte}}$$

• Flat spacetime: $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$

 $\eta_{\mu
u} = {\sf diag}(-1,\,1,\,1,\,1)_{\mu
u}$

 $\chi^{r} = \left(\chi^{\circ}, \chi^{\sharp}, \chi^{2}, \chi^{3}\right)$

Curved spacetime

dxr

x

GR as a sofa

- Curved spacetime: $ds^2 = \underbrace{g_{\mu\nu}(x)}_{\text{metric}} dx^{\mu} dx^{\nu}$
 - Changes in causal structure: $ds^2 \leq 0$
 - Curvature: $R_{\mu\nu} = R_{\mu\nu}[g]$
 - ightarrow coordinate-covariant $x^{\mu}
 ightarrow x'^{\mu}(x)$
 - \rightarrow characterizes geometry
 - → explicit formula

Inset: curvature

• $R^{\mu}_{\ \nu\lambda\rho} \equiv \partial_{\lambda}\Gamma^{\mu}_{\nu\rho} - \partial_{\rho}\Gamma^{\mu}_{\nu\lambda} + \Gamma^{\mu}_{\sigma\lambda}\Gamma^{\sigma}_{\nu\rho} - \Gamma^{\mu}_{\sigma\rho}\Gamma^{\sigma}_{\nu\lambda}$, $R_{\nu\rho} \equiv R^{\mu}_{\ \nu\mu\rho}$, $R \equiv g^{\mu\nu}R_{\mu\nu}$ nonzero in curved spacetime!

Now, $T^{\mu}_{\nu} \nabla_{\mu} A^{\nu}$, $R_{\mu\nu} A^{\mu} B^{\nu}$ — <u>invariants!</u>

Example: Black hole spacetime

• Schwarzshild radius = horizon:

 $|\mathbf{v}(\mathbf{r}_h)| = 1$ or $r_h = 2GM$

 \rightarrow *r* < *r*_h — fall into the center!

- $\rightarrow r = r_h \text{light stays in place}$
- \rightarrow *r* > *r_h* fly away

Horizon is a fictituous surface!

В

Example: Black hole spacetime

• Flat in radial coordinates:

$$ds^{2} = -dt^{2} + dr^{2} + \underbrace{d\theta^{2} + \sin^{2}\theta \, d\varphi^{2}}_{d\Omega^{2}}$$

• Black hole (Gullstrand-Painlevé coord-s):

$$ds^2 = -dt'^2 + (dr - vdt')^2 + r^2 d\Omega^2$$

- Spacetime velocity: $v(r) = -\sqrt{\frac{2GM}{r}}$
- M black hole mass
- Schwarzshild radius = horizon:

 $|\mathbf{v}(\mathbf{r}_h)| = 1$ or $r_h = 2GM$

 \rightarrow *r* < *r*_h — fall into the center!

- $\rightarrow r = r_h \text{light stays in place}$
- \rightarrow *r* > *r_h* fly away

Horizon is a fictituous surface!

Properties of black holes

• Black hole (Gullstrand-Painlevé coord-s):

$$ds^2 = -dt'^2 + (dr - vdt')^2 + r^2 d\Omega^2$$

• Black hole (Schwarzshild coord-s):

$$t' \rightarrow t = t' + 2\sqrt{rr_h} + r_h \ln\left(\frac{\sqrt{r} - \sqrt{r_h}}{\sqrt{r} + \sqrt{r_h}}\right)$$

and obtain

$$\frac{h}{h}$$

$$ds^{2} = -\underbrace{(1 - r_{h}/r)}_{f(r)} dt^{2} + \frac{dr^{2}}{1 - r_{h}/r} + r^{2}d\Omega^{2}$$
Properties

• GR solution: $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$
without matter!

• Not singular at $r = r_{h}$

• But: singularity at $r \to 0!$
 $R_{\mu\nu\rho\lambda}R^{\mu\nu\rho\lambda} = 12\frac{r_{h}^{2}}{r^{6}}$

• Flat at $r \to +\infty$
 $\to \text{ compact object}$
 $\to \text{ Newtonian physics there!}$
 $U_{N} \approx \frac{1}{2}[f - 1] = -\frac{GM}{r}$

Sizes of black holes

 $r_h = 2GM$

- Astrophysical black holes (observed): $M = M_{\odot} \Rightarrow r_h \sim 3 \text{ km}$
- Supermassive black holes (observed): $M = 10^6 \div 10^9 \ M_{\odot} \Rightarrow r_h \sim 1 \div 1000 \ R_{\odot}$

• Some other black holes (unobserved): $M \sim 3 \times 10^{-8} M_{\odot} \Rightarrow r_h \sim 0.1 \text{ mm (Moon mass)}$ $M \sim 10^{-12} M_{\odot} \Rightarrow r_h \sim 3 \text{ nm (asteroid mass)}$ $M \sim \text{kg} \Rightarrow r_h \sim 10^{11} \text{ GeV}^{-1}$ $M \sim M_{pl} \equiv G^{-1/2} \Rightarrow r_h \sim M_{pl}^{-1} \sim 10^{-33} \text{ cm (Planckian)}$

Black holes are small!

Moving in black hole spacetime

- Objects in GR move along geodesics
- Geodesics = maximum of proper time

$$\tau_{AB} = \int_A^B d\tau = \int_A^B \sqrt{-ds^2}$$

• Extremum \Rightarrow equation

$$\frac{u^{\mu}}{2\tau} + \underbrace{\Gamma^{\mu}_{\nu\lambda}u^{\nu}u^{\lambda}}_{= 0} = 0$$

acceleration grav. force

• Four-velocity: $u^{\mu} = \frac{dx^{\mu}}{d\tau}$, $g_{\mu\nu}u^{\mu}u^{\nu} = -1$

- Light-like geodesics: same equation, but $g_{\mu\nu}u^{\mu}u^{\nu} = 0$
- Conserved quantities:

$$ightarrow$$
 Symmetry $x^{\mu}
ightarrow x^{\mu} + \xi^{\mu} \Delta t$, $\xi^{\mu} = (1, 0, 0, 0)$

$$\rightarrow$$
 Energy $E/m = -\xi^{\mu}u^{\nu}g_{\mu\nu}$

 \rightarrow Angular momentum: $L/m = \eta^{\mu} u^{\nu} g_{\mu\nu}$, $\eta^{\mu} = (0, 0, 0, \Delta \varphi = 1)$

Moving in black hole spacetime

Cannot leave the horizon!

norizon

out-moving light rays

light

A portrait of a black hole

Supermassive black hole

galaxy: M87 distance: 5×10^7 ly observed on March 11, 2017	mass: $M \approx 6 \times 10^9 \ M_{\odot}$ radius: $r_h \approx 100 \ { m AU}$
by Event Horizon Telescope	

Black hole in our galaxy

VLT

stars moving around black hole

Supermassive black hole in Milky Way (Sgr A)

Mass: $M \sim 4 \cdot 10^6 M_{\odot}$

Radius: $r_h \sim 4 R_{\odot}$ Distance: 8 kpc

black hole portrait (EHT)

Singular solutions do not exist in physics!

Argument

- Give rockets to experimentalists
- 2 Let them go into black hole & measure the singularity
- One of them returns!

⇒ Singularity is unobservable!
 ... as well as the region inside the horizon

Singularity theorems: general idea

Singularities form from smooth matter distributions!

particles

supernovae SN2018gv \rightarrow (Hubble Space Telescope)

collapse of a star

star

• Perfect fluid:

$$T_{\mu
u} = \underbrace{p}_{\text{pressure}} g_{\mu
u} + (p + \underbrace{\rho}_{\text{density}}) u^{\mu} \underbrace{u^{\nu}}_{\text{velocity}}$$

P.F

 $u^{\prime\prime}$

• Fluid at rest in flat space: $g_{\mu\nu} = \eta_{\mu\nu}$,

$$u^{\mu} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \ \mathcal{T}_{\mu
u} = \begin{pmatrix}
ho & p & p \\ p & p & p \\ p & p & p \end{pmatrix}$$

• Null Energy Condition (NEC):

 $T_{\mu\nu}k^{\mu}k_{\nu} \ge 0 \text{ for any null } k k^{\mu}k^{\nu}g_{\mu\nu} = 0$

- \rightarrow fluid: $p + \rho \ge 0$
- \rightarrow vacuum: $p + \rho = 0$
- \rightarrow any sensible matter satisfies NEC! (the weakest condition on $T_{\mu\nu}$)

Singularity theorem

Singularities form from smooth initial data! hence black holes exist...

Cosmic censorship hypothesis

Roger Penrose '69

Hypothesis

 \rightarrow Singularities in GR are covered by horizons \rightarrow If the matter is good

dust: not good perfect fluid: not good needs pressure & friction!

Nobel prize to R. Penrose

"for the discovery that black hole formation is a robust prediction of the general theory of relativity"

for the conjecture!

By default, believe in conjecture!

Simplification: hoop conjecture

Body of mass *M* collapses if:

- it fits into a hoop of radius $r_h = 2GM$;
- irrespectively of the hoop orientation

Squeeze them:

Example 1: Sun, $M = M_{\odot}$, $R \sim 10^6$ km \Rightarrow $r_h = 3$ km

Example 2: Neutron star, $M \sim 1.5 M_{\odot}$, $R \sim 10$ km \Rightarrow $\left| \frac{r_{h}}{r_{h}} = 4$ km $\right|$

Kip Thorne '72

Can you avoid singularity?

Collapse into a wormhole?

our Universe

 $\mathsf{throat} \leftrightarrow \mathsf{throat}$

between universes

 $\mathsf{throat} \leftrightarrow \mathsf{throat}$

- Move throat with acceleration
 - \Rightarrow paradox of twins
 - ⇒ Time Machine!

• Need *NEC* for that! ghosts, beyond Hordenski theories, etc...

The fact is: singularity is unobservable!

Penrose diagrams

Where can you go? \leftarrow causal structure!

Draw a diagram:

- \rightarrow ignore θ and φ ;
- \rightarrow keep time & radius;
- \rightarrow light rays are diagonal (45°)!
- \rightarrow draw infinity as a finite box.

Notations

$$\mathcal{J}^{\pm}$$
 — null infinities

Penrose diagrams

Where can you go? ← causal structure!

Draw a diagram:

- \rightarrow ignore θ and φ ;
- \rightarrow keep time & radius;
- \rightarrow light rays are diagonal (45°)!
- \rightarrow draw infinity as a finite box.

Notations

$$\mathcal{J}^{\pm}$$
 — null infinities

Definition of a black hole

- Black hole = spacetime region from where you cannot go to infinity
 Nonlocal: depends on the future!
- Horizon = black hole boundary
 - \rightarrow also nonlocal in time
 - \rightarrow fictitious surface
 - \rightarrow may have small curvature
- White hole = spacetime region where you cannot enter
 - \rightarrow time reflection $t \rightarrow -t$
 - \rightarrow singular spacetime does not exist?

Black holes are defined by causal structure!

Summary

• GR:

- gravity = curved spacetime or $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R = 8\pi GT_{\mu\nu}$
- curvature: R = R[g]
- energy-momentum tensor: $T_{\mu\nu} = pg_{\mu\nu} + (p + \rho)u_{\mu}u_{\nu}$ (fluid)
- bodies move along geodesics (extremal proper time)
 - \rightarrow symmetries \leftrightarrow conserved quantities
- Classical black holes
 - Black hole = a region you cannot leave (N.B. moving liquid)
 - \rightarrow *E* < 0 inside black hole (out-moving rays)
 - horizon = black hole boundary, $r_h = 2GM$
 - \rightarrow fictitious surface (nonlocal in time)
 - singularities form in collapse of smooth matter
 - \rightarrow if trapped surface appears (theorem)
 - \rightarrow if hoop conjecture is satisfied
 - \rightarrow censorship conjecture: sing-s are covered by horizons!
 - BHs are smooth: r = 0 singularity is unobservable
 - \rightarrow see causal structure in Penrose diagram
 - Classical BHs are the graveyards of the Universe!

Thank you for attention!