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No–hair theorems

beginning

⇒

end

beginning

⇒

end

Black hole eating particles and a planet

No–hair “theorem” 1
Matter is either eaten by BH

or flies away to infinity

→ proven for weak
perturbations around BH

→ no general proof
→ but valid in known cases

No–hair theorem 2
Black hole with mass M, angular
momentum a and charge Q is
the most general stationary

solution in GR

→ proved in
GR + electrodynamics

kind of obvious ...



No–hair theorems in a nutshell

Black holes have no hair

No–hair “theorem” 1
Black holes are the

end-states of evolution!

No–hair theorem 2
All black holes are identical

... except for M, a, and Q

People

black holes



Charged black hole

a = 0, Q ̸= 0

Charged BH = Reissner-Nordstrom BH
Interval:

ds2 = −f (r) dt2 + dr2

f (r)
+ r2dΩ2

the same form!

But: f (r) = 1− 2GM

r
+

GQ2

r2

rQ

r ′Q

Not a vacuum solution: Rµν − 1
2gµνR = 8πGTµν

Electric potential: A0 = Q/r ← creates Tµν ̸= 0!

Horizon: f (r) = 0 ← not a singularity! (the same argument)

quadratic eq. ⇒ rQ = GM

[
1 +

√
1− Q2

GM2

]
second solution r ′Q < rQ — under horizon



Classical black holes = graveyards in the Universe

With time:
planets will fall onto stars
stars will fly away
or fall into central BHs
accelerated expansion
⇒ outer space will be empty

only BHs remain in the dark ...

Classical black holes = perfect
matter & information storages

but they do not give it back ...



Black holes = thermal equilibria?

beginning

⇒

end: V , T

gas thermalizes in the box

Thermodynamics

1 With time, complex systems
thermalize

2 Thermal equilibria
↔ few macro-parameters

beginning

⇒

end: M, a, Q

black hole eats particles

Black holes

1 With time, systems
collapse into BHs

2 Black holes ↔ M, a, Q

similarity so far ...



Cannot live with classical gravity!

Schrödinger cat

|dead⟩+ |alive⟩

Schrödinger cat in GR

|dead, gdead⟩+ |alive, galive⟩

⇒ a state of grav. field exists
⇒ sum of grav. states = grav. state

Emission of grav. wave

e−

e−

g

|Ψin⟩
evolution−−−−→ |Ψout⟩

⇒ grav. wave consists of gravitons
⇒ metric ↔ virtual gravitons

Gravity is the ordinary quantum theory!



Quantum black hole

black hole

=

also black hole

black hole = bound state of gravitons

But we do not know how to quantize it!



Number of gravitons inside black hole

Grav. waves: gµν = ηµν + hµν︸︷︷︸
wave

⇒ GR eqs: □ hTTij = 0 ← linearized in h

⇒ gravitons are massless: Eg≡ ωg = |pg |

Uncertainty principle:

Eg ∼ pg ≥
1

rh
≡ 1

2GM

⇒ Number of gravitons inside BH:

Ng ∼
M

Eg
≲ GM2 or Ng ≲

r2h
l2pl

→ Ah ≡= 4πr2h — area of horizon

→ lpl =
√
G ∼ 10−33 cm — Planck length

black hole: rh

Ng ≲ Ah/l
2
pl



Black holes are two–dimensional?
Ng ∼ (rh/lpl)

2

Number of gravitons: Ng ∝ r2h

Number of states:
→ each graviton: ∼ k states
→ Ng gravitons: Γ ∼ kNg states

→ Entropy: SB≡ ln Γ ∼ #
r2h
l2pl

N ∼ (L/a)3

a

Number of aroms: N ∝ L3

Number of states:
→ each: ∼ k states
→ N atoms: Γ ∼ kN states

→ Entropy: S ∝ L3

There is nothing behind the horizon?



Bekenstein bound and quizzical holography

Practical problem: maximal hard-drive storage
Maximal Nγ inside region R

Uncertainty:

Eγ ∼ pγ≳ R−1 or E ∼ NγEγ ≳
Nγ

R
Hoop conjecture:
R ≲ 2GE or collapse!
Put everything together:

⇒ Nγ ≲
R2

G
∼ R2

l2pl
and S ≡ ln Γ≲

R2

l2pl

Bekenstein bound
Cannot pack large entropy into R!

or it collapses
Black holes have the maximal entropy

Nγ photons

R

The entire world in two-dimensional!



Statistics = ensembles of systems
Black holes resemble thermal states...

p1

|Ψ1⟩

p2

|Ψ2⟩
. . .

pΓ

|ΨΓ⟩

︸ ︷︷ ︸
many identical systemsDensity matrix:

ρ̂ = |Ψ⟩⟨Ψ| - one system: ⟨Â⟩ ≡ tr(ρ̂ Â) = ⟨Ψ|Â|Ψ⟩

ρ̂ =
∑
n

pn︸︷︷︸
probability

|Ψn⟩⟨Ψn| - ensemble: ⟨Â⟩ ≡ tr(ρ̂ Â) =
∑

pn⟨Ψn|Â|Ψn⟩

normalization: ⟨1⟩ = tr ρ̂ = 1

Thermal equilibrium: ρ̂ = Z−1e−Ĥ/T — Boltzmann exponent

Normalization: Z = tr e−Ĥ/T With time, systems arrive into
thermal equilibrium



Thermal instantons
Statistical sum: Z = tr e−Ĥ/T

Related to evolution operator: T−1 ≡ −itβ
Z = tr e−i Ĥtβ

but with imaginary time t = −i τ︸︷︷︸
Euclidean

timeEuclidean time: 0 ≤ τ ≤ T−1

Path integral:

Z =

∫
dx0︸ ︷︷ ︸
tr

∫
dx(τ)

∣∣∣x0, τ=0

x0, τ=T−1︸ ︷︷ ︸
periodic

trajectories

e−SE [x]︸ ︷︷ ︸
cl. action
t → −iτ

Saddle-point method: SE ≫ 1
main contributions x ∼ xcl(τ)︸ ︷︷ ︸

instanton =

:SE minimal︸ ︷︷ ︸
class. solution!

!

Thermal instantons = periodic in τ solutions

oscillator

thermal gas
result

Z = e−SE [xcl ]



Thermal instantons in quantum gravity
Gibbons, Hawking ’77

Consider quantum gravity at temperature T

We did not even quantize gravity!
Nevertheless: t = −iτ , gE

µν = gE
µν(τ, x)

Z =

∫
dgE

µν(τ, x)
∣∣∣
periodic︸ ︷︷ ︸

period T−1

e−Sgr, E [g
E ]︸ ︷︷ ︸

grav . action

Sgr ,E =
1

16πG

∫
d4xE

√
gE R + boundary term

Thermal instanton = periodic in τ solution
We already have stationary (⇒ periodic) solution!

A black hole: ds2 = +f (r)dτ2 +
dr2

f (r)
+ r2dΩ2

But now it is singular!

f (rh) = 0 ← not covered by the horizon!

No light-cones in Euclidean spacetime



Black hole as a thermal instanton

Look closely!

ds2 = +f (r)dτ2 +
dr2

f (r)
+ r2dΩ2

Zoom into horizon: f ≈ (r − rh)f
′
h

Introduce

ρ = 2

√
r − rh
f ′h

and ϑ =
f ′h
2
τ

Obtain ds2 = ρ2dϑ2 + dρ2︸ ︷︷ ︸
flat plane!

+r2hdΩ
2

But ∆ϑ =
f ′h
2
∆τ =

f ′h
2T

→ ∆ϑ = 2π — plane
→ ∆ϑ ̸= 2π — cone singularity

TH =
f ′h
4π

=
1

8πGM

Hawking (BH)
temperature

Gibbons, Hawking ’77

x1

x2

ρ→
∆ϑ

r →

τrh

r →

τrh



Statistical sum for gravity

TH =
c3ℏ

8πkBGM

r →

τrh

Quantum & relativistic thermodynamics for gravity

Substitute the instanton: Z = e−SE
gr [g

E
BH ] = e−4πGM2

Entropy: imagine that all states have the same energy!

Z =
∑
n
e−En/TH = eSB︸︷︷︸

number of
states

· e−M/TH︸ ︷︷ ︸
BH mass

Bekenstein entropy:

SB = lnZ +
M

TH
= 4πGM2=

Ah

4l2pl

First law of thermodynamics
THdS ≡ δQ = dM

Automatically satisfied!

⇒δQ

M



First law for charged black hole

f (r) = 1− 2GM

r
+

GQ2

r2

Horizon: rQ = GM

[
1 +

√
1− Q2

GM2

]
Temperature:

TH =
f ′h
4π

=
1

2πGM

√
1− Q2/GM2

[1 +
√
1− Q2/GM2]2

Entropy: SQ =
4πr2Q
4lpl2

First law: THdSQ = dM − Q

rQ
dQ

Critical BH: M = QMpl

TH = 0, but SQ ̸= 0!

rQ

r ′Q

←

∣∣∣∣∣∣
Extra term with
A0(rQ) = Q/r
work to bring dQ!



Estimates

Entropy:

Entropy of matter in the entire Universe:

SU =
2000

cm3
× Vol(30 Gpc) ∼ 1090

Black hole in the Milky Way:

SB = 4πG (4 · 106M⊙)
2 ∼ 1089

Black holes keep all the entropy!

Temperature:
Black hole in the Milky Way, M ∼ 4 · 106 M⊙: TH ∼ 10−14 K
Astrophysical black holes, M ∼ 3M⊙: TH ∼ 10−8 K
Moon-mass black hole, M ∼ 4 · 10−8 M⊙: TH ∼ 2 K
Asteroid-mass black hole, M ∼ 10−12M⊙: TH ∼ 104 K
Smallest primordial black hole, M ∼ 1014 g: TH ∼ 1012 K
Planckian black hole, M ∼ Mpl : TH ∼ Mpl

Small (or not...)



Second law of black hole thermodynamics

Black hole area theorem Hawking ’71

If GR equations are valid, then:
total area BH horizons grows in the process of evolution.

Ah

Ah′

beginning

Ah+h′

end

Ah + Ah′ ≤ Ah+h′

Entropy grows ↔ second law!



Black hole entropy from scattering
Bezrukov, DL, Sibiryakov ’15

Collapse of a quantum spherical shell:

beginning

quantum shell

E , R(t)

⇒

black hole

M = E

⇒

end

Calculate it semiclassically!

Result: P(contraction→ expansion) ∼ e−πE2/M2
pl = e−SB

A probability of choosing 1 state out of Γ ∼ eSB states!



Black hole thermodynamics

law № hot bodies black holes

0 systems thermalize with time BHs eat surrounding matter

equilibrium is characterized by
few parameters (gas: V и T )

BHs: mass M, charge Q &
angular momentum a

I energy conservation
δQ ≡ TdS = dE + pdV THdSB = dM − A0(rQ)dQ

II entropy cannot decrease total area of all BH horizons
cannot decrease

III entropy is zero at zero
temperature ?



Third law of black hole thermodynamics

Critical BH: M = QMpl , TH = 0, SQ ̸= 0

⇒ Entropy is nonzero at zero temperature!

(N.B. Doubts in stability of critical BHs!)

still ...

Alternative (safe) formulation
Critical BH cannot be reached

in finite time

⇒∆Q

M, Q

Particular calculations:

This holds both for black holes and for ordinary systems!



The story is not yet consistent!

TH

TH

thermal equilibrium?
No, this will happen:

beginning

⇒

end

All hot systems emit particles!
... and black holes do (next lecture)!



Summary

Black holes
Unique solutions with few parameters (have no hair): M, Q, a
Bound states of gravitons
Periodic in Euclidean time τ with period T−1

H
⇒ have temperature TH = (8πGM)−1 ← Hawking temp.
Have entropy SB = Ah/4l

2
pl ← Bekenstein entropy

⇒ they are two-dimensional
→ this is the maximal possible entropy (Bekenstein bound)
⇒ the world is two-dimensional!
They shine! (next lecture)

Black hole thermodynamics
0. Black holes eat all surrounding matter & they are unique
I. Energy conservation
II. Total area of black hole horizons cannot decrease with time
III. Critical black holes cannot be reached in finite time.

Thank you for attention!


