Black holes

Part 3. Hawking radiation and the Information paradox

Dmitry Levkov

INR RAS & ITMP MSU

Voronovo, Russia, 02/03/2024

Penrose diagrams

Where can you go? \leftarrow causal structure!

Draw a diagram:

- \rightarrow ignore θ and φ ;
- \rightarrow keep time & radius;
- \rightarrow light rays are diagonal (45°)!
- \rightarrow draw infinity as a finite box.

Notations

$$\mathcal{J}^{\pm}$$
 — null infinities

Penrose diagrams

Where can you go? ← causal structure!

Draw a diagram:

- \rightarrow ignore θ and φ ;
- \rightarrow keep time & radius;
- \rightarrow light rays are diagonal (45°)!
- \rightarrow draw infinity as a finite box.

Notations

$$\mathcal{J}^{\pm}-$$
 null infinities

Definition of a black hole

- Black hole = spacetime region from where you cannot go to infinity
 Nonlocal: depends on the future!
- Horizon = black hole boundary
 - \rightarrow also nonlocal in time
 - \rightarrow fictitious surface
 - \rightarrow may have small curvature
- White hole = spacetime region where you cannot enter
 - \rightarrow time reflection $t \rightarrow -t$
 - \rightarrow singular spacetime does not exist?

Black holes are defined by causal structure!

Hawking radiation: main idea

Uncertainty relation: $\left| \Delta p \gtrsim L^{-1} \right|$ \Rightarrow vacuum fluctuations (virtual particles) HOENDO. $L \times L \times L$ singulari vacuum in QFT vacuum near horizon

Flat spacetime — not real particles!

- \rightarrow Energy conservation: $E_{tot} = 0$
- \rightarrow Do not exist for long: $\Delta E_{\gamma} \Delta t \gtrsim 1$

Hawking radiation: main idea

But: negative energy states under the horizon!

 $|U\rangle \approx \sum_{E>0} c(E) |\underbrace{E}_{\text{Hawking falls into}}, \underbrace{-E}_{\text{particle singularity}}\rangle$

space

 \Rightarrow Ever-lasting radiation!

Density matrix

$$|U\rangle \approx \sum_{E>0} c(E) |E, -E\rangle$$

- |U
 angle pure quantum state
- But we cannot register particles under horizon

$$\Rightarrow \hat{\rho}_{\rm rad} = \operatorname{tr}_{\rm bh} |U\rangle \langle U| = \sum_{E>0} |c(E)|^2 |E\rangle \langle E|$$

$$\Rightarrow \hat{\rho}_{\rm bh} = \operatorname{tr}_{\rm rad} |U\rangle \langle U| = \sum_{E>0} |c(E)|^2 |-E\rangle \langle E|$$

• Hawking radiation is characterized by a density matrix!

$$\langle U|\hat{A}_{
m rad}|U
angle \equiv tr_{\it rad}\left(\hat{
ho}_{
m rad}\hat{A}_{
m rad}
ight)$$

• Actual calculation: $c(E) = Z^{-1} e^{-E/2T_H}$

 \Rightarrow Thermal density matrix $\left| \hat{\rho}_{rad} = Z^{-1} e^{-\hat{H}_{rad}/T_H} \right|$!

Black hole shines like a true thermal state!

black hole = lamp at temperature T_H

thermal equilibrium!

But:

- Changes chemical composition of the gas
- E.g., breaks B L!

Hawking radiation: the actual calculation

Black hole lifetime

Generalized black hole thermodynamics

law I: Energy conservation $S_B dT_H = dM$

law II: Total entropy cannot decrease

$$S_{\rm tot} = \frac{A_h}{4I_{pl}^2} + S_{\rm rad}$$

law 0: Thermal states = maxima of S_{tot} !

law III: Critical BHs cannot be reached in finite time

Now, we have a consistent picture!

Impossible in a unitary quantum theory!

- Complete loss of information on $|\Psi\rangle$!
- This is the information paradox

$|\Psi angle ightarrow \hat{ ho}_{ m rad}$: what is wrong?

- Errors in calculation \leftrightarrow pure Hawking radiation?
- Quantum theory is wrong?
- General relativity should be modified?
- Remnant will save the day?

 $|\Psi
angle
ightarrow \hat{
ho}_{
m rad}$: what is wrong?

• Errors in calculation \leftrightarrow pure Hawking radiation?

 \rightarrow Corrections to Hawking result: series in $\left| \ M_{\it pl} / M \ll 1 \right|$

 \rightarrow Can they purify radiation: $\hat{
ho}_{\rm rad} = |\Psi_{\rm rad}\rangle\langle\Psi_{\rm rad}| \approx Z^{-1} {\rm e}^{-\hat{H}/T_H}$?

- Quantum theory is wrong?
 - \rightarrow Should be non–unitary!
 - → Loss of predictability & CPT Black hole: cannot predict the past Time reversal: cannot predict the future
- General relativity should be modified?
 - \rightarrow Definition of horizon depends on future
 - \Rightarrow Such GR modifications should be strongly nonlocal!
 - \Rightarrow Consistent modifications were not found ...
- Remnant will save the day?
 - \rightarrow Expected to have $M \sim M_{pl}$
 - \Rightarrow Too small to contain all information?

Cloning paradox

- Suppose Hawking radiation is pure \leftarrow error in calculations
- \Rightarrow Hawking photons γ contain all info about fallen photons γ
- Nice slices $\Sigma_{i, f}$ smooth 3d spaces
- Initial state $|\Psi_{\gamma}
 angle$ lives in Σ_i

Final state $|\Psi_{\gamma}, \Psi_{\gamma}\rangle$ — lives in Σ_{f}

•
$$|\Psi_{\gamma}\rangle \xrightarrow{\text{evolution}} |\Psi_{\gamma}, \Psi_{\gamma}\rangle$$

cloning

We are in trouble!

We cannot pretend that the paradox does not exist!

Black hole complementarity

Complementarity in QM: cannot measure \hat{p} and \hat{x} simultaneously

Observers outside never meet observers inside

Black hole complementarity

Cannot compare measurements inside and outside of BH

- \Rightarrow Cannot define final state on Σ_f
- ightarrow Not clear, where it lives

⇒ Falling and outside observers see different worlds!

... like the BH insides mirror the BH outsides

Black holes are strange!

Cloning paradox returns!

Kamikaze: R = Romeo, J = Josephine

Paradox:

- $\bullet\,$ Romeo jumps into a BH & sends γ
- Josephine waits & jumps
- Meets both R-photon γ and Hawking photon γ !

Scrambling time = max time to reach r = 0

 $\frac{t_{\rm scr}}{\rm t}=2r_h\ln(r_h/l_{\rm pl})$

Resolution of the paradox

Assume BHs detain information for $\Delta t \geq t_{scr}$

Looks strange!

Recall Hawking calculation:

- Particles are created pairs
- Pairs are in pure state $|U\rangle$
 - \Rightarrow BH + radiation is in pure state!

Remnant with $M = M_{pl}$ contains all information?

No, it does not!

Entanglement entropy

Algebraic theorems:

•
$$|\Psi
angle$$
 — pure state \Rightarrow $E_{
m rad}$ = $E_{
m BH}$

- max $E_i = \ln \Gamma_i$ reached at thermal $\hat{\rho}_i$
- min $E_i = 0$ reached at pure $\hat{\rho}_i = |\Psi_i\rangle\langle\Psi_i|$

Conclusion

• $E_{\text{rad or BH}} \leq \min(\ln\Gamma_{\text{rad}}, \ln\Gamma_{\text{BH}}) = \min(A_h/4l_{pl}^2, S_{\text{rad}})$

Planckian remnant does not help!

AdS/CFT correspondence

Conformal Field Theories: theories without scale

The idea of the AdS/CFT correspondence

CFT:

The second girl is smaller

All sizes are equivalent

The idea of the AdS/CFT correspondence

AdS₅:

The second girl is further away

The girls are equal in fifth dimension

AdS_5 as a book-keeper of the sizes

$$ds_5^2 = \frac{l_{\rm AdS}^2}{l^2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dl^2 \right)$$

Symmetry: $x^{\mu} \rightarrow a x^{\mu}$, $I \rightarrow a I$

The paradox is absent!

CFT is a unitary theory in flat spacetime!

The paradox is absent!

CFT is a unitary theory in flat spacetime!

Search better: information is conserved!

Ryu-Takayanagi formula for the entanglement entropy

- Divide space into $A \cup B = \mathbb{R}^3$
- Σ hypersurface with boundary A

Entanglement entropy:

• CFT:
$$E_A^{\text{CFT}} = \text{tr}_B(\hat{\rho} \ln \hat{\rho})$$

• AdS₅ $E_A^{\text{AdS}} = \min_{\Sigma} \left\{ \frac{A_{\Sigma}}{4l_{\rho l}^3} + E(\text{matter inside }\Sigma) \right\}$

 $AdS/CFT: E_A^{CFT} = E_A^{AdS}$

Application to black holes

Penington '19

Application to black holes

Black holes shine

- As black bodies with $T_H = (8\pi G)^{-1}$
- Live $t_{BH} = 5120\pi G^2 M^3$
- This is consistent with BH thermodynamics

No information paradox

• How to get this information? - Nobody knows

Black holes are strange!

- The internal space is a copy of the space outside
- Hold information for scrambling time
- Start to release it after Page time
- Strange formula for the entanglement entropy

Thank you!